Groupby class and count missing values in features

前端 未结 3 891
慢半拍i
慢半拍i 2021-01-17 07:16

I have a problem and I cannot find any solution in the web or documentation, even if I think that it is very trivial.

What do I want to do?

I have a datafram

相关标签:
3条回答
  • 2021-01-17 08:04

    You can use set_index and sum:

    df.set_index('CLASS').isna().sum(level=0)
    

    Output:

           FEATURE1  FEATURE2  FEATURE3
    CLASS                              
    X           1.0       1.0       2.0
    B           0.0       0.0       0.0
    
    0 讨论(0)
  • 2021-01-17 08:06

    Compute a mask with isna, then group and find the sum:

    df.drop('CLASS', 1).isna().groupby(df.CLASS, sort=False).sum().reset_index()
    
      CLASS  FEATURE1  FEATURE2  FEATURE3
    0     X       1.0       1.0       2.0
    1     B       0.0       0.0       0.0
    

    Another option is to subtract the size from the count using rsub along the 0th axis for index aligned subtraction:

    df.groupby('CLASS').count().rsub(df.groupby('CLASS').size(), axis=0)
    

    Or,

    g = df.groupby('CLASS')
    g.count().rsub(g.size(), axis=0)
    

           FEATURE1  FEATURE2  FEATURE3
    CLASS                              
    B             0         0         0
    X             1         1         2
    

    There are quite a few good answers, so here are some timeits for your perusal:

    df_ = df
    df = pd.concat([df_] * 10000)
    
    %timeit df.drop('CLASS', 1).isna().groupby(df.CLASS, sort=False).sum()
    %timeit df.set_index('CLASS').isna().sum(level=0)    
    %%timeit
    g = df.groupby('CLASS')
    g.count().rsub(g.size(), axis=0)
    
    11.8 ms ± 108 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
    9.47 ms ± 379 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
    6.54 ms ± 81.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
    

    Actual performance depends on your data and setup, so your mileage may vary.

    0 讨论(0)
  • 2021-01-17 08:14

    Using the diff between count and size

    g=df.groupby('CLASS')
    
    -g.count().sub(g.size(),0)
    
              FEATURE1  FEATURE2  FEATURE3
    CLASS                              
    B             0         0         0
    X             1         1         2
    

    And we can transform this question to the more generic question how to count how many NaN in dataframe with for loop

    pd.DataFrame({x: y.isna().sum()for x , y in g }).T.drop('CLASS',1)
    Out[468]: 
       FEATURE1  FEATURE2  FEATURE3
    B         0         0         0
    X         1         1         2
    
    0 讨论(0)
提交回复
热议问题