I have written a function and called another function inside but my tests show that it is not time optimized. How can I make the following code faster?
f
Algorithmic optimization: create new array with cumulative sums from index 0 to every index
cumsum[0] = 0;
for (var i = 1; i <= arr.Length; i++) {
cumsum[i] = cumsum[i-1] + arr[i-1]
Now you don't need to calculate sums for every range - just get difference
sum for range (i..j) = cumsum[j+1] - cumsum[i];
in your terms:
function sumAll(array1, myrange) {
return cumsum[myrange[1]+1] - cumsum[myrange[0]];
}
example:
arr = [1,2,3,4]
cumsum = [0,1,3,6,10]
sum for range 1..2 = 6 - 1 = 5
P.S. If your array might be updated, consider Fenwick tree data structure
1) You can define the function sumAll
outside of the function maxSum
because every time you call maxSum
the javascript engine is recreating a fresh new function sumAll
.
2) You can define myrange[1]
as a variable in the initialiser part to avoid javascript to look for myrange[1]
at each iteration.
for (var i = myrange[0]; i <= myrange[1]; i++) {
total += array1[i];
}
become this:
for (var i = myrange[0], len = myrange[1]; i <= len; i++) {
total += array1[i];
}
Full working code based on @MBo's excellent optimization. This passes all the tests at https://www.codewars.com/kata/the-maximum-sum-value-of-ranges-challenge-version/train/javascript, which I gather is where this problem comes from.
function maxSum(arr, ranges) {
var max = null;
var sums = [];
var sofar = 0;
for (var i = 0; i <= arr.length; i++) {
sums[i] = sofar;
sofar += arr[i];
}
for (var i = 0; i < ranges.length; i++) {
var sum = sums[ranges[i][1]+1] - sums[ranges[i][0]];
if (max === null || sum > max) {
max = sum;
}
}
return max;
}