Strange values of training and testing when running my CNN in Tensorflow

后端 未结 1 1678
终归单人心
终归单人心 2021-01-17 04:40

I´ve been trying to train and evaluate a convolutional neural network using my own data, which consists in 200 training images and 20 testing images. My complete script is h

相关标签:
1条回答
  • 2021-01-17 05:16

    sinc I can't follow what your code. here an example a full conv layer script using Tensorflow.

    1st If you're working with images it really does make sense to serialize your data convolution operations are tense enough! The following script serializes youe images in TFrecords format. [based on Inception example ].

        '''
    Converts image data to TFRecords file format with Example protos.
    The image data set is expected to reside in JPEG files located in the
    following directory structure.
      trainingset/label_0/image0.jpeg
      trainingset/label_0/image1.jpg
      ...
      testset/label_1/weird-image.jpeg
      testset/label_1/my-image.jpeg
    '''
    
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    from datetime import datetime
    import os
    import random
    import sys
    import threading
    
    import numpy as np
    import tensorflow as tf
    
    tf.app.flags.DEFINE_string('train_directory', '/tmp/',
                               'Training data directory')
    tf.app.flags.DEFINE_string('validation_directory', '/tmp/',
                               'Validation data directory')
    tf.app.flags.DEFINE_string('output_directory', '/tmp/',
                               'Output data directory')
    
    tf.app.flags.DEFINE_integer('train_shards', 2,
                                'Number of shards in training TFRecord files.')
    tf.app.flags.DEFINE_integer('validation_shards', 2,
                                'Number of shards in validation TFRecord files.')
    
    tf.app.flags.DEFINE_integer('num_threads', 2,
                                'Number of threads to preprocess the images.')
    
    # The labels file contains a list of valid labels are held in this file.
    # Assumes that the file contains entries as such:
    #   dog
    #   cat
    #   flower
    # where each line corresponds to a label. We map each label contained in
    # the file to an integer corresponding to the line number starting from 0.
    tf.app.flags.DEFINE_string('labels_file', '', 'Labels file')
    
    
    FLAGS = tf.app.flags.FLAGS
    
    
    def _int64_feature(value):
      """Wrapper for inserting int64 features into Example proto."""
      if not isinstance(value, list):
        value = [value]
      return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
    
    
    def _bytes_feature(value):
      """Wrapper for inserting bytes features into Example proto."""
      return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
    
    
    def _convert_to_example(filename, image_buffer, label, text, height, width):
      """Build an Example proto for an example.
      Args:
        filename: string, path to an image file, e.g., '/path/to/example.JPG'
        image_buffer: string, JPEG encoding of RGB image
        label: integer, identifier for the ground truth for the network
        text: string, unique human-readable, e.g. 'dog'
        height: integer, image height in pixels
        width: integer, image width in pixels
      Returns:
        Example proto
      """
    
      colorspace = 'RGB'
      channels = 3
      image_format = 'JPEG'
    
      example = tf.train.Example(features=tf.train.Features(feature={
          'image/height': _int64_feature(height),
          'image/width': _int64_feature(width),
          'image/colorspace': _bytes_feature(tf.compat.as_bytes(colorspace)),
          'image/channels': _int64_feature(channels),
          'image/class/label': _int64_feature(label),
          'image/class/text': _bytes_feature(tf.compat.as_bytes(text)),
          'image/format': _bytes_feature(tf.compat.as_bytes(image_format)),
          'image/filename': _bytes_feature(tf.compat.as_bytes(os.path.basename(filename))),
          'image/encoded': _bytes_feature(tf.compat.as_bytes(image_buffer))}))
      return example
    
    
    class ImageCoder(object):
      """Helper class that provides TensorFlow image coding utilities."""
    
      def __init__(self):
        # Create a single Session to run all image coding calls.
        self._sess = tf.Session()
    
        # Initializes function that converts PNG to JPEG data.
        self._png_data = tf.placeholder(dtype=tf.string)
        image = tf.image.decode_png(self._png_data, channels=3)
        self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
    
        # Initializes function that decodes RGB JPEG data.
        self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
        self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
    
      def png_to_jpeg(self, image_data):
        return self._sess.run(self._png_to_jpeg,
                              feed_dict={self._png_data: image_data})
    
      def decode_jpeg(self, image_data):
        image = self._sess.run(self._decode_jpeg,
                               feed_dict={self._decode_jpeg_data: image_data})
        assert len(image.shape) == 3
        assert image.shape[2] == 3
        return image
    
    
    def _is_png(filename):
      """Determine if a file contains a PNG format image.
      Args:
        filename: string, path of the image file.
      Returns:
        boolean indicating if the image is a PNG.
      """
      return '.png' in filename
    
    
    def _process_image(filename, coder):
      """Process a single image file.
      Args:
        filename: string, path to an image file e.g., '/path/to/example.JPG'.
        coder: instance of ImageCoder to provide TensorFlow image coding utils.
      Returns:
        image_buffer: string, JPEG encoding of RGB image.
        height: integer, image height in pixels.
        width: integer, image width in pixels.
      """
      # Read the image file.
      with tf.gfile.FastGFile(filename, 'rb') as f:
        image_data = f.read()
    
      # Convert any PNG to JPEG's for consistency.
      if _is_png(filename):
        print('Converting PNG to JPEG for %s' % filename)
        image_data = coder.png_to_jpeg(image_data)
    
      # Decode the RGB JPEG.
      image = coder.decode_jpeg(image_data)
    
      # Check that image converted to RGB
      assert len(image.shape) == 3
      height = image.shape[0]
      width = image.shape[1]
      assert image.shape[2] == 3
    
      return image_data, height, width
    
    
    def _process_image_files_batch(coder, thread_index, ranges, name, filenames,
                                   texts, labels, num_shards):
      """Processes and saves list of images as TFRecord in 1 thread.
      Args:
        coder: instance of ImageCoder to provide TensorFlow image coding utils.
        thread_index: integer, unique batch to run index is within [0, len(ranges)).
        ranges: list of pairs of integers specifying ranges of each batches to
          analyze in parallel.
        name: string, unique identifier specifying the data set
        filenames: list of strings; each string is a path to an image file
        texts: list of strings; each string is human readable, e.g. 'dog'
        labels: list of integer; each integer identifies the ground truth
        num_shards: integer number of shards for this data set.
      """
      # Each thread produces N shards where N = int(num_shards / num_threads).
      # For instance, if num_shards = 128, and the num_threads = 2, then the first
      # thread would produce shards [0, 64).
      num_threads = len(ranges)
      assert not num_shards % num_threads
      num_shards_per_batch = int(num_shards / num_threads)
    
      shard_ranges = np.linspace(ranges[thread_index][0],
                                 ranges[thread_index][1],
                                 num_shards_per_batch + 1).astype(int)
      num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0]
    
      counter = 0
      for s in range(num_shards_per_batch):
        # Generate a sharded version of the file name, e.g. 'train-00002-of-00010'
        shard = thread_index * num_shards_per_batch + s
        output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards)
        output_file = os.path.join(FLAGS.output_directory, output_filename)
        writer = tf.python_io.TFRecordWriter(output_file)
    
        shard_counter = 0
        files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int)
        for i in files_in_shard:
          filename = filenames[i]
          label = labels[i]
          text = texts[i]
    
          try:
            image_buffer, height, width = _process_image(filename, coder)
          except Exception as e:
            print(e)
            print('SKIPPED: Unexpected eror while decoding %s.' % filename)
            continue
    
          example = _convert_to_example(filename, image_buffer, label,
                                        text, height, width)
          writer.write(example.SerializeToString())
          shard_counter += 1
          counter += 1
    
          if not counter % 1000:
            print('%s [thread %d]: Processed %d of %d images in thread batch.' %
                  (datetime.now(), thread_index, counter, num_files_in_thread))
            sys.stdout.flush()
    
        writer.close()
        print('%s [thread %d]: Wrote %d images to %s' %
              (datetime.now(), thread_index, shard_counter, output_file))
        sys.stdout.flush()
        shard_counter = 0
      print('%s [thread %d]: Wrote %d images to %d shards.' %
            (datetime.now(), thread_index, counter, num_files_in_thread))
      sys.stdout.flush()
    
    
    def _process_image_files(name, filenames, texts, labels, num_shards):
      """Process and save list of images as TFRecord of Example protos.
      Args:
        name: string, unique identifier specifying the data set
        filenames: list of strings; each string is a path to an image file
        texts: list of strings; each string is human readable, e.g. 'dog'
        labels: list of integer; each integer identifies the ground truth
        num_shards: integer number of shards for this data set.
      """
      assert len(filenames) == len(texts)
      assert len(filenames) == len(labels)
    
      # Break all images into batches with a [ranges[i][0], ranges[i][1]].
      spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int)
      ranges = []
      for i in range(len(spacing) - 1):
        ranges.append([spacing[i], spacing[i + 1]])
    
      # Launch a thread for each batch.
      print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges))
      sys.stdout.flush()
    
      # Create a mechanism for monitoring when all threads are finished.
      coord = tf.train.Coordinator()
    
      # Create a generic TensorFlow-based utility for converting all image codings.
      coder = ImageCoder()
    
      threads = []
      for thread_index in range(len(ranges)):
        args = (coder, thread_index, ranges, name, filenames,
                texts, labels, num_shards)
        t = threading.Thread(target=_process_image_files_batch, args=args)
        t.start()
        threads.append(t)
    
      # Wait for all the threads to terminate.
      coord.join(threads)
      print('%s: Finished writing all %d images in data set.' %
            (datetime.now(), len(filenames)))
      sys.stdout.flush()
    
    
    def _find_image_files(data_dir, labels_file):
      """Build a list of all images files and labels in the data set.
      Args:
        data_dir: string, path to the root directory of images.
          Assumes that the image data set resides in JPEG files located in
          the following directory structure.
            data_dir/dog/another-image.JPEG
            data_dir/dog/my-image.jpg
          where 'dog' is the label associated with these images.
        labels_file: string, path to the labels file.
          The list of valid labels are held in this file. Assumes that the file
          contains entries as such:
            dog
            cat
            flower
          where each line corresponds to a label. We map each label contained in
          the file to an integer starting with the integer 0 corresponding to the
          label contained in the first line.
      Returns:
        filenames: list of strings; each string is a path to an image file.
        texts: list of strings; each string is the class, e.g. 'dog'
        labels: list of integer; each integer identifies the ground truth.
      """
      print('Determining list of input files and labels from %s.' % data_dir)
      unique_labels = [l.strip() for l in tf.gfile.FastGFile(
          labels_file, 'r').readlines()]
    
      labels = []
      filenames = []
      texts = []
    
      # Leave label index 0 empty as a background class.
      label_index = 1
    
      # Construct the list of JPEG files and labels.
      for text in unique_labels:
        jpeg_file_path = '%s/%s/*' % (data_dir, text)
        matching_files = tf.gfile.Glob(jpeg_file_path)
    
        labels.extend([label_index] * len(matching_files))
        texts.extend([text] * len(matching_files))
        filenames.extend(matching_files)
    
        if not label_index % 100:
          print('Finished finding files in %d of %d classes.' % (
              label_index, len(labels)))
        label_index += 1
    
      # Shuffle the ordering of all image files in order to guarantee
      # random ordering of the images with respect to label in the
      # saved TFRecord files. Make the randomization repeatable.
      shuffled_index = list(range(len(filenames)))
      random.seed(12345)
      random.shuffle(shuffled_index)
    
      filenames = [filenames[i] for i in shuffled_index]
      texts = [texts[i] for i in shuffled_index]
      labels = [labels[i] for i in shuffled_index]
    
      print('Found %d JPEG files across %d labels inside %s.' %
            (len(filenames), len(unique_labels), data_dir))
      return filenames, texts, labels
    
    
    def _process_dataset(name, directory, num_shards, labels_file):
      """Process a complete data set and save it as a TFRecord.
      Args:
        name: string, unique identifier specifying the data set.
        directory: string, root path to the data set.
        num_shards: integer number of shards for this data set.
        labels_file: string, path to the labels file.
      """
      filenames, texts, labels = _find_image_files(directory, labels_file)
      _process_image_files(name, filenames, texts, labels, num_shards)
    
    
    def main(unused_argv):
      assert not FLAGS.train_shards % FLAGS.num_threads, (
          'Please make the FLAGS.num_threads commensurate with FLAGS.train_shards')
      assert not FLAGS.validation_shards % FLAGS.num_threads, (
          'Please make the FLAGS.num_threads commensurate with '
          'FLAGS.validation_shards')
      print('Saving results to %s' % FLAGS.output_directory)
    
      # Run it!
      _process_dataset('validation', FLAGS.validation_directory,
                       FLAGS.validation_shards, FLAGS.labels_file)
      _process_dataset('train', FLAGS.train_directory,
                       FLAGS.train_shards, FLAGS.labels_file)
    
    
    if __name__ == '__main__':
      tf.app.run()
    

    you need to start the script as followed :

    python Building_Set.py --train_directory=TrainingSet --output_directory=TF_Recordsfolder --validation_directory=ReferenceSet --labels_file=labels.txt --train_shards=1 --validation_shards=1 --num_threads=1 
    

    PS: you need a labels.txt where the labels are saved.

    After generating both training and test sets serialized files you can now use the data in the following convNN script:

    import tensorflow as tf
    import sys
    import numpy as np
    import matplotlib.pyplot as plt
    filter_max_dimension = 50
    filter_max_depth = 30
    filter_h_and_w  = [3,3]
    filter_depth    = [3,3]
    numberOFclasses = 21
    TensorBoard = "TB_conv2NN"
    TF_Records   = "TF_Recordsfolder"
    learning_rate = 1e-5
    max_numberofiteretion =100000
    batchSize  = 21
    img_height = 128
    img_width  = 128
    
    
    # 1st function to read images form TF_Record
    def getImage(filename):
        with tf.device('/cpu:0'):
            # convert filenames to a queue for an input pipeline.
            filenameQ = tf.train.string_input_producer([filename],num_epochs=None)
    
            # object to read records
            recordReader = tf.TFRecordReader()
    
            # read the full set of features for a single example
            key, fullExample = recordReader.read(filenameQ)
    
            # parse the full example into its' component features.
            features = tf.parse_single_example(
                fullExample,
                features={
                    'image/height': tf.FixedLenFeature([], tf.int64),
                    'image/width': tf.FixedLenFeature([], tf.int64),
                    'image/colorspace': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
                    'image/channels':  tf.FixedLenFeature([], tf.int64),
                    'image/class/label': tf.FixedLenFeature([],tf.int64),
                    'image/class/text': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
                    'image/format': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
                    'image/filename': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
                    'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value='')
                })
    
            # now we are going to manipulate the label and image features
            label = features['image/class/label']
            image_buffer = features['image/encoded']
            # Decode the jpeg
            with tf.name_scope('decode_img',[image_buffer], None):
                # decode
                image = tf.image.decode_jpeg(image_buffer, channels=3)
    
                # and convert to single precision data type
                image = tf.image.convert_image_dtype(image, dtype=tf.float32)
            # cast image into a single array, where each element corresponds to the greyscale
            # value of a single pixel.
            # the "1-.." part inverts the image, so that the background is black.
            image=tf.reshape(1-tf.image.rgb_to_grayscale(image),[img_height*img_width])
            # re-define label as a "one-hot" vector
            # it will be [0,1] or [1,0] here.
            # This approach can easily be extended to more classes.
            label=tf.stack(tf.one_hot(label-1, numberOFclasses))
            return label, image
    
    with tf.device('/cpu:0'):
        train_img,train_label = getImage(TF_Records+"/train-00000-of-00001")
        validation_img,validation_label=getImage(TF_Records+"/validation-00000-of-00001")
        # associate the "label_batch" and "image_batch" objects with a randomly selected batch---
        # of labels and images respectively
        train_imageBatch, train_labelBatch = tf.train.shuffle_batch([train_img, train_label], batch_size=batchSize,capacity=50,min_after_dequeue=10)
    
        # and similarly for the validation data
        validation_imageBatch, validation_labelBatch = tf.train.shuffle_batch([validation_img, validation_label],
                                                        batch_size=batchSize,capacity=50,min_after_dequeue=10)
    
    
    
    def train():
        with tf.device('/gpu:0'):
            config =tf.ConfigProto(log_device_placement=False, allow_soft_placement=True)
            #config.gpu_options.allow_growth = True
            #config.gpu_options.per_process_gpu_memory_fraction=0.9
            sess = tf.InteractiveSession(config = config)
            #defining tensorflow graph :
            with tf.name_scope("input"):
                x = tf.placeholder(tf.float32,[None, img_width*img_height],name ="pixels_values")
                y_= tf.placeholder(tf.float32,[None,numberOFclasses],name='Prediction')
            with tf.name_scope("input_reshape"):
                image_shaped =tf.reshape(x,[-1,img_height,img_width,1])
                tf.summary.image('input_img',image_shaped,numberOFclasses)
            #defining weigths and biases:
            def weights_variable (shape):
                return tf.Variable(tf.truncated_normal(shape,stddev=0.1))
            def bias_variable(shape):
                return tf.Variable(tf.constant(0.1,shape=shape))
            #help function to generates summaries for given variables
            def variable_summaries(var):
                with tf.name_scope('summaries'):
                    mean = tf.reduce_mean(var)
                    tf.summary.scalar('mean', mean)
                    with tf.name_scope('stddev'):
                        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
                    tf.summary.scalar('stddev', stddev)
                    tf.summary.scalar('max', tf.reduce_max(var))
                    tf.summary.scalar('min', tf.reduce_min(var))
                    tf.summary.histogram('histogram', var)
    
            def conv2d(x, W):
                return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
            def max_pool_2x2(x):
              return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
                with tf.name_scope('1st_conv_layer'):
                    W_conv1 = weights_variable([filter_h_and_w[0],filter_h_and_w[0], 1, filter_depth[0]])
                    b_conv1 = bias_variable([filter_depth[0]])
                    h_conv1 = tf.nn.relu(conv2d(tf.reshape(x,[-1,img_width,img_height,1]), W_conv1) + b_conv1)
                with tf.name_scope('1nd_Pooling_layer'):
                    h_conv1 = max_pool_2x2(h_conv1)
                with tf.name_scope('2nd_conv_layer'):
                    W_conv2 = weights_variable([filter_h_and_w[1],filter_h_and_w[1], filter_depth[0], filter_depth[1]])
                    b_conv2 = bias_variable([filter_depth[1]])
                    h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2) + b_conv2)
    
            with tf.name_scope('1st_Full_connected_Layer'):
                W_fc1 = weights_variable([filter_depth[1]*64, 1024])
                b_fc1 = bias_variable([1024])
                h_pool_flat = tf.reshape(h_conv2, [-1,filter_depth[1]*64])
                h_fc1 = tf.nn.relu(tf.matmul(h_pool_flat, W_fc1) + b_fc1)
    
    
            with tf.name_scope('Dropout'):
                keep_prob = tf.placeholder("float")
                h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
            with tf.name_scope('Output_layer'):
                W_fc3 = weights_variable([1024, numberOFclasses])
                b_fc3 = bias_variable([numberOFclasses])
                y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc3) + b_fc3)
    
            with tf.name_scope('cross_entropy'):
            # The raw formulation of cross-entropy,
            #
            # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
            #                               reduction_indices=[1]))
            #
            # can be numerically unstable.
            #
            # So here we use tf.nn.softmax_cross_entropy_with_logits on the
            # raw outputs of the nn_layer above, and then average across
            # the batch.
                diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)
                with tf.name_scope('total'):
                  cross_entropy = tf.reduce_mean(diff)
            tf.summary.scalar('cross_entropy', cross_entropy)
    
            with tf.name_scope('train'):
              train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
    
            with tf.name_scope('accuracy'):
                with tf.name_scope('correct_prediction'):
                  correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
                with tf.name_scope('accuracy'):
                  accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            tf.summary.scalar('accuracy', accuracy)
            # Merging Summaries
            merged = tf.summary.merge_all()
            train_writer = tf.summary.FileWriter(TensorBoard + '/train', sess.graph)
            test_writer = tf.summary.FileWriter(TensorBoard + '/test')
            # initialize the variables
            sess.run(tf.global_variables_initializer())
    
            # start the threads used for reading files
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess,coord=coord)
    
            # feeding function
            def feed_dict(train):
                if True :
                    #img_batch, labels_batch= tf.train.shuffle_batch([train_label,train_img],batch_size=batchSize,capacity=500,min_after_dequeue=200)
                    img_batch , labels_batch = sess.run([ train_labelBatch ,train_imageBatch])
                    dropoutValue = 0.7
                else:
                    #   img_batch,labels_batch = tf.train.shuffle_batch([validation_label,validation_img],batch_size=batchSize,capacity=500,min_after_dequeue=200)
                    img_batch,labels_batch = sess.run([ validation_labelBatch,validation_imageBatch])
                    dropoutValue = 1
                return {x:img_batch,y_:labels_batch,keep_prob:dropoutValue}
    
            for i  in range(max_numberofiteretion):
                if i%10 == 0:#Run a Test
                    summary, acc = sess.run([merged,accuracy],feed_dict=feed_dict(False))
                    #plt.imshow(output[0,:,:,1],cmap='gray')
                    #plt.show()
                    test_writer.add_summary(summary,i)# Save to TensorBoard
                else: # Training
                  if i % 100 == 99:  # Record execution stats
                    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                    run_metadata = tf.RunMetadata()
                    summary, _ = sess.run([merged, train_step],
                                          feed_dict=feed_dict(True),
                                          options=run_options,
                                          run_metadata=run_metadata)
                    train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
                    train_writer.add_summary(summary, i)
                  else:  # Record a summary
                    output , summary, _ = sess.run([h_conv1,merged, train_step], feed_dict=feed_dict(True))
                    train_writer.add_summary(summary, i)
            # finalise
            coord.request_stop()
            coord.join(threads)
            train_writer.close()
            test_writer.close()
    
    
    
    filter_h_and_w[0] = np.random.randint(3, filter_max_dimension)
    filter_h_and_w[1] = np.random.randint(3, filter_max_dimension)
    filter_depth[0] = np.random.randint(3, filter_max_depth)
    filter_depth[1] = np.random.randint(3, filter_max_depth)
    TensorBoard = "ConV2NN/_filter"+str(filter_h_and_w[0])+"To"+str(filter_h_and_w[1])+"D"+str(filter_depth[0])+"To"+str(filter_depth[1])+"R10e5"
    
    with tf.device('/gpu:0') :
            train()
    

    The script is using both GPU and CPU if you don't have GPU TF is going to use the cpu of your device. The code is self explaining, u need to change the image resolution value and number of class. and you need to start Tensorboard, the script is save a test and train folder for tensorboard you just need to start it in your browser. since you have only 2 classes I think two conv layers are enough, if you think you need more it pretty easy to add ones. I hope this will help

    0 讨论(0)
提交回复
热议问题