Converting pandas dataframe to structured arrays

后端 未结 3 1524
别跟我提以往
别跟我提以往 2021-01-17 02:03

I have the following pandas dataframe

import pandas as pd
a = [2.5,3.3]
b = [3.6,3.9]
D = {\'A\': a, \'B\': b}

which gives me

相关标签:
3条回答
  • 2021-01-17 02:38

    Melt the DataFrame to make A and B (the column index) into a column. To get rid of the numeric index, make this new column the index. Then call to_records():

    import pandas as pd
    a = [2.5,3.3]
    b = [3.6,3.9]
    D = {'A': a, 'B': b}
    df = pd.DataFrame(D)
    result = (pd.melt(df, var_name='Type', value_name='Value')
              .set_index('Type').to_records())
    print(repr(result))
    

    yields

    rec.array([('A',  2.5), ('A',  3.3), ('B',  3.6), ('B',  3.9)], 
              dtype=[('Type', 'O'), ('Value', '<f8')])
    

    This is the key step:

    In [167]: df
    Out[167]: 
         A    B
    0  2.5  3.6
    1  3.3  3.9
    
    In [168]: pd.melt(df)
    Out[168]: 
      variable  value
    0        A    2.5
    1        A    3.3
    2        B    3.6
    3        B    3.9
    

    Once you've melted the DataFrame, to_records (basically) returns the desired result:

    In [169]: pd.melt(df).to_records()
    Out[169]: 
    rec.array([(0, 'A',  2.5), (1, 'A',  3.3), (2, 'B',  3.6), (3, 'B',  3.9)], 
              dtype=[('index', '<i8'), ('variable', 'O'), ('value', '<f8')])
    
    0 讨论(0)
  • 2021-01-17 02:38

    You can melt and call to_records:

    pd.melt(df).to_records(index=False)
    
    0 讨论(0)
  • 2021-01-17 02:50
    np.rec.fromrecords(list(zip(df.melt().variable,df.melt().value)))
    Out[531]: 
    rec.array([('A',  2.5), ('A',  3.3), ('B',  3.6), ('B',  3.9)], 
              dtype=[('f0', '<U1'), ('f1', '<f8')])
    
    0 讨论(0)
提交回复
热议问题