I am trying to provide the search to end user with type as they go which is is more like sqlserver. I was able to implement ES query for the given sql scenario:
The most efficient solution involves leveraging an ngram tokenizer in order to tokenize portions of your name
field. For instance, if you have a name like peter tomson
, the ngram tokenizer will tokenize and index it like this:
So, when this has been indexed, searching for any of those tokens will retrieve your document with peter thomson
in it.
Let's create the index:
PUT likequery
{
"settings": {
"analysis": {
"analyzer": {
"my_ngram_analyzer": {
"tokenizer": "my_ngram_tokenizer"
}
},
"tokenizer": {
"my_ngram_tokenizer": {
"type": "nGram",
"min_gram": "2",
"max_gram": "15"
}
}
}
},
"mappings": {
"typename": {
"properties": {
"name": {
"type": "string",
"fields": {
"search": {
"type": "string",
"analyzer": "my_ngram_analyzer"
}
}
},
"type": {
"type": "string",
"index": "not_analyzed"
}
}
}
}
}
You'll then be able to search like this with a simple and very efficient term
query:
POST likequery/_search
{
"query": {
"bool": {
"should": [
{
"term": {
"name.search": "peter tom"
}
}
],
"must_not": [
{
"match": {
"type": "xyz"
}
},
{
"match": {
"type": "abc"
}
}
]
}
}
}
Well my solution is not perfect and I am not sure about performance. So you should try it on your own risk :)
This is es 5 version
PUT likequery
{
"mappings": {
"typename": {
"properties": {
"name": {
"type": "string",
"fields": {
"raw": {
"type": "keyword"
}
}
},
"type": {
"type": "string"
}
}
}
}
}
in ES 2.1 change "type": "keyword" to "type": "string", "index": "not_analyzed"
PUT likequery/typename/1
{
"name": "peter tomson"
}
PUT likequery/typename/2
{
"name": "igor tkachenko"
}
PUT likequery/typename/3
{
"name": "taras shevchenko"
}
Query is case sensetive
POST likequery/_search
{
"query": {
"regexp": {
"name.raw": ".*taras shev.*"
}
}
}
Response
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "likequery",
"_type": "typename",
"_id": "3",
"_score": 1,
"fields": {
"raw": [
"taras shevchenko"
]
}
}
]
}
}
PS. Once again I am not sure about performance of this query since it will use scan and not index.