split content of column into lines in pyspark

前端 未结 2 1383
南方客
南方客 2021-01-16 19:14

I have a dataframe df:

+------+----------+--------------------+
|SiteID| LastRecID|        Col_to_split|
+------+----------+--------------------+
|     2|105         


        
相关标签:
2条回答
  • 2021-01-16 19:37

    As of Spark 2.1.0, you can use posexplode which unnest array column and output the index for each element as well, (used data from @Herve):

    import pyspark.sql.functions as F
    df.select(
        F.col("LastRecID").alias("RecID"), 
        F.posexplode(F.col("coltosplit")).alias("index", "value")
    ).show()
    +-----+-----+-----+
    |RecID|index|value|
    +-----+-----+-----+
    |10526|    0|  214|
    |10526|    1|  207|
    |10526|    2|  206|
    |10526|    3|  205|
    |10896|    0|  213|
    |10896|    1|  208|
    +-----+-----+-----+
    
    0 讨论(0)
  • 2021-01-16 19:45

    I quickly tried with Spark 2.0 You can change the query a little bit if you want to order differently.

    d = [{'SiteID': '2', 'LastRecId': 10526, 'coltosplit': [214,207,206,205]}, {'SiteID': '2', 'LastRecId': 10896, 'coltosplit': [213,208]}]
    df = spark.createDataFrame(d)
    
    +---------+------+--------------------+
    |LastRecId|SiteID|          coltosplit|
    +---------+------+--------------------+
    |    10526|     2|[214, 207, 206, 205]|
    |    10896|     2|          [213, 208]|
    +---------+------+--------------------+
    
    query = """
    select LastRecId as RecID, 
    (row_number() over (partition by LastRecId order by 1)) - 1 as index, 
    t as Value 
    from test 
    LATERAL VIEW explode(coltosplit) test AS t
    """
    df.createTempView("test")
    spark.sql(query).show()
    
    +-----+-----+-----+
    |RecID|index|Value|
    +-----+-----+-----+
    |10896|    0|  213|
    |10896|    1|  208|
    |10526|    0|  214|
    |10526|    1|  207|
    |10526|    2|  206|
    |10526|    3|  205|
    +-----+-----+-----+
    

    So basically I just explode the list into a new column. And apply row number on this column.

    Hope this helps

    0 讨论(0)
提交回复
热议问题