How to do two-dimensional regression analysis in Python?

前端 未结 1 1371
谎友^
谎友^ 2021-01-16 12:15

Firstly, I am not familiar with Python and I still barely understand the mechanism of Python code. But I need to do some statistical analysis through Python.

I have

相关标签:
1条回答
  • 2021-01-16 12:28

    Here is example Python code using scipy.optimize.curve_fit to fit a surface, and it makes a 3D scatterplot of the raw data, a 3D scatterplot of the errors, a surface plot, and a contour plot. Change this to use your own data and function, and you should be done.

    import numpy, scipy
    import scipy.optimize
    import matplotlib
    from mpl_toolkits.mplot3d import  Axes3D
    from matplotlib import cm # to colormap 3D surfaces from blue to red
    import matplotlib.pyplot as plt
    
    graphWidth = 800 # units are pixels
    graphHeight = 600 # units are pixels
    
    # 3D contour plot lines
    numberOfContourLines = 16
    
    
    def SurfacePlot(equationFunc, data, params):
        f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    
        matplotlib.pyplot.grid(True)
        axes = Axes3D(f)
    
        x_data = data[0]
        y_data = data[1]
        z_data = data[2]
    
        xModel = numpy.linspace(min(x_data), max(x_data), 20)
        yModel = numpy.linspace(min(y_data), max(y_data), 20)
        X, Y = numpy.meshgrid(xModel, yModel)
    
        Z = equationFunc(numpy.array([X, Y]), *params)
    
        axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
    
        axes.scatter(x_data, y_data, z_data) # show data along with plotted surface
    
        axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
        axes.set_xlabel('X Data') # X axis data label
        axes.set_ylabel('Y Data') # Y axis data label
        axes.set_zlabel('Z Data') # Z axis data label
    
        plt.show()
        plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
    
    
    def ContourPlot(equationFunc, data, params):
        f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
        axes = f.add_subplot(111)
    
        x_data = data[0]
        y_data = data[1]
        z_data = data[2]
    
        xModel = numpy.linspace(min(x_data), max(x_data), 20)
        yModel = numpy.linspace(min(y_data), max(y_data), 20)
        X, Y = numpy.meshgrid(xModel, yModel)
    
        Z = equationFunc(numpy.array([X, Y]), *params)
    
        axes.plot(x_data, y_data, 'o')
    
        axes.set_title('Contour Plot') # add a title for contour plot
        axes.set_xlabel('X Data') # X axis data label
        axes.set_ylabel('Y Data') # Y axis data label
    
        CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
        matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours
    
        plt.show()
        plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
    
    
    def ScatterPlot(data, title):
        f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    
        matplotlib.pyplot.grid(True)
        axes = Axes3D(f)
        x_data = data[0]
        y_data = data[1]
        z_data = data[2]
    
        axes.scatter(x_data, y_data, z_data, depthshade=False, color='k')
    
        axes.set_title(title)
        axes.set_xlabel('X Data')
        axes.set_ylabel('Y Data')
        axes.set_zlabel('Z Data')
    
        plt.show()
        plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
    
    
    def EquationFunc(data, *params):
        p0 = params[0]
        p1 = params[1]
        return p0 + numpy.sqrt(data[0]) + numpy.cos(data[1] / p1)
    
    
    if __name__ == "__main__":
    
        # raw data
        xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
        yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
        zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])
    
        pInitial = (1.0, 1.0)
        popt, pcov = scipy.optimize.curve_fit(EquationFunc,(xData,yData),zData, p0=pInitial)
    
        dataForPlotting = [xData, yData, zData]
    
        ScatterPlot([xData, yData, zData], 'Data Scatter Plot (click-drag with mouse)')
        SurfacePlot(EquationFunc, [xData, yData, zData], popt)
        ContourPlot(EquationFunc, [xData, yData, zData], popt)
    
        absError = zData - EquationFunc((xData,yData), *popt)
        ScatterPlot([xData, yData, absError], 'Error Scatter Plot (click-drag with mouse)')
    
    0 讨论(0)
提交回复
热议问题