Multiple images input to the same CNN using Conv3d in keras

后端 未结 1 532
长情又很酷
长情又很酷 2021-01-16 08:52

I want to enter 8 images at the same time to the same CNN structure using conv3d. my CNN model is as following:

def build(sample, frame, height, width, chann         


        
相关标签:
1条回答
  • 2021-01-16 08:59

    ** Edit: updated the link Here is a custom imagedatagenerator for 5D input to Conv3D nets. Hope it helps. Here is an example on how to use it:

    from tweaked_ImageGenerator_v2 import ImageDataGenerator
    datagen = ImageDataGenerator()
    train_data=datagen.flow_from_directory('path/to/data', target_size=(x, y), batch_size=32, frames_per_step=4)
    

    OR

    You can build your own 5D tensor:

    frames_folder = 'path/to/folder'
    X_data = []
    y_data = []
    list_of_sent = os.listdir(frames_folder)
    print (list_of_sent)
    class_num = 0
    time_steps = 0  
    frames = []
    for i in list_of_sent:
        classes_folder = str(frames_folder + '/' + i) #path to each class
        print (classes_folder)
        list_of_frames = os.listdir(classes_folder)
        time_steps= 0
        frames = []
        for filename in  sorted(list_of_frames):   
            if ( time_steps == 8 ):
                X_data.append(frames) #appending each tensor of 8 frames resized to 110,110
                y_data.append(class_num) #appending a class label to the set of 8 frames
                j = 0  
                frames = []
            else:
                time_steps+=1
                filename = cv2.imread(vid + '/' + filename)
                filename = cv2.resize(filename,(110, 110),interpolation=cv2.INTER_AREA)
                frames.append(filename)
    
    
        class_num+=1
    X_data = np.array(X_data)
    y_data = np.array(y_data)
    

    For the snippet above, the folder structure must be like that:

        data/
            class0/
                img001.jpg
                img002.jpg
                ...
            class1/
                img001.jpg
                img002.jpg
                ...
    
    0 讨论(0)
提交回复
热议问题