I have two big arrays to work on. But let\'s take a look on the following simplified example to get the idea:
I would like to find if an element in data1
Probably not the fastest, but easy and reasonably fast: use KDTrees:
>>> data1 = [[1,1],[2,5],[623,781]]
>>> data2 = [[1,1], [161,74],[357,17],[1,1]]
>>>
>>> from operator import itemgetter
>>> from scipy.spatial import cKDTree as KDTree
>>>
>>> def intersect(a, b):
... A = KDTree(a); B = KDTree(b); X = A.query_ball_tree(B, 0.5)
... ai, bi = zip(*filter(itemgetter(1), enumerate(X)))
... ai = np.repeat(ai, np.fromiter(map(len, bi), int, len(ai)))
... bi = np.concatenate(bi)
... return ai, bi
...
>>> intersect(data1, data2)
(array([0, 0]), array([0, 3]))
Two fake data sets 1,000,000
pairs each takes 3
seconds:
>>> from time import perf_counter
>>>
>>> a = np.random.randint(0, 100000, (1000000, 2))
>>> b = np.random.randint(0, 100000, (1000000, 2))
>>> t = perf_counter(); intersect(a, b); s = perf_counter()
(array([ 971, 3155, 15034, 35844, 41173, 60467, 73758, 91585,
97136, 105296, 121005, 121658, 124142, 126111, 133593, 141889,
150299, 165881, 167420, 174844, 179410, 192858, 222345, 227722,
233547, 234932, 243683, 248863, 255784, 264908, 282948, 282951,
285346, 287276, 302142, 318933, 327837, 328595, 332435, 342289,
344780, 350286, 355322, 370691, 377459, 401086, 412310, 415688,
442978, 461111, 469857, 491504, 493915, 502945, 506983, 507075,
511610, 515631, 516080, 532457, 541138, 546281, 550592, 551751,
554482, 568418, 571825, 591491, 594428, 603048, 639900, 648278,
666410, 672724, 708500, 712873, 724467, 740297, 740640, 749559,
752723, 761026, 777911, 790371, 791214, 793415, 795352, 801873,
811260, 815527, 827915, 848170, 861160, 892562, 909555, 918745,
924090, 929919, 933605, 939789, 940788, 940958, 950718, 950804,
997947]), array([507017, 972033, 787596, 531935, 590375, 460365, 17480, 392726,
552678, 545073, 128635, 590104, 251586, 340475, 330595, 783361,
981598, 677225, 80580, 38991, 304132, 157839, 980986, 881068,
308195, 162984, 618145, 68512, 58426, 190708, 123356, 568864,
583337, 128244, 106965, 528053, 626051, 391636, 868254, 296467,
39446, 791298, 356664, 428875, 143312, 356568, 736283, 902291,
5607, 475178, 902339, 312950, 891330, 941489, 93635, 884057,
329780, 270399, 633109, 106370, 626170, 54185, 103404, 658922,
108909, 641246, 711876, 496069, 835306, 745188, 328947, 975464,
522226, 746501, 642501, 489770, 859273, 890416, 62451, 463659,
884001, 980820, 171523, 222668, 203244, 149955, 134192, 369508,
905913, 839301, 758474, 114597, 534015, 381467, 7328, 447698,
651929, 137424, 975677, 758923, 982976, 778075, 95266, 213456,
210555]))
>>> print(s-t)
2.98617472499609
Because your data is all integers, you can use a dictionary (hash table), time is 0.55 seconds for the same data as in Paul's answer. This won't necessarily find all copies of pairings between a
and b
(i.e. if a
and b
themselves contain duplicates), but it's easy enough to modify this to do that or to make a second pass afterward (over just the matched items) to check for other occurrences of those vectors in the data.
import numpy as np
def intersect1(a, b):
a_d = {}
for i, x in enumerate(a):
a_d[x] = i
for i, y in enumerate(b):
if y in a_d:
yield a_d[y], i
from time import perf_counter
a = list(tuple(x) for x in list(np.random.randint(0, 100000, (1000000, 2))))
b = list(tuple(x) for x in list(np.random.randint(0, 100000, (1000000, 2))))
t = perf_counter(); print(list(intersect1(a, b))); s = perf_counter()
print(s-t)
For comparison, Paul's takes 2.46s on my machine.
Note The other answers, using a dictionary (for checking exact matches) or a KDTree (for epsilon-close matches), are much better than this—both much faster and much more memory-efficient.
Use scipy.spatial.distance.cdist. If your two data arrays have N
and M
entries each, it will make an N
by M
pairwise distance array. If you can fit that in RAM, then it's easy to find the indexes that match:
import numpy as np
from scipy.spatial.distance import cdist
# Generate some data that's very likely to have repeats
a = np.random.randint(0, 100, (1000, 2))
b = np.random.randint(0, 100, (1000, 2))
# `cityblock` is likely the cheapest distance to calculate (no sqrt, etc.)
c = cdist(a, b, 'cityblock')
# And the indexes of all the matches:
aidx, bidx = np.nonzero(c == 0)
# sanity check:
print([(a[i], b[j]) for i,j in zip(aidx, bidx)])
The above prints out:
[(array([ 0, 84]), array([ 0, 84])),
(array([50, 73]), array([50, 73])),
(array([53, 86]), array([53, 86])),
(array([96, 85]), array([96, 85])),
(array([95, 18]), array([95, 18])),
(array([ 4, 59]), array([ 4, 59])), ... ]