Implementation of homography in Tensorflow

后端 未结 1 1438
逝去的感伤
逝去的感伤 2021-01-16 04:56

I am trying to implement a network in TensorFlow that learns to predict homography (Wiki). My network will output a 4-dimensional vector, which will be used to translate 2 i

相关标签:
1条回答
  • 2021-01-16 05:31

    Since you are only interested in optimizing translations, I came up with this function to perform a translation and have gradients for the vectors, using @tf.custom_gradient:

    import tensorflow as tf
    
    @tf.custom_gradient
    def my_img_translate(imgs, translates):
        # Interpolation model has to be fixed due to limitations of tf.custom_gradient
        interpolation = 'NEAREST'
        imgs_translated = tf.contrib.image.translate(imgs, translates, interpolation=interpolation)
        def grad(img_translated_grads):
            translates_x = translates[:, 0]
            translates_y = translates[:, 1]
            translates_zero = tf.zeros_like(translates_x)
            # X gradients
            imgs_x_grad = (imgs[:, :, :-2] - imgs[:, :, 2:]) / 2
            imgs_x_grad = tf.concat([(imgs[:, :, :1] - imgs[:, :, 1:2]),
                                     imgs_x_grad,
                                     (imgs[:, :, -2:-1] - imgs[:, :, -1:])], axis=2)
            imgs_x_grad_translated = tf.contrib.image.translate(
                imgs_x_grad, tf.stack([translates_x, translates_zero], axis=1),
                interpolation=interpolation)
            translates_x_grad = tf.reduce_sum(img_translated_grads * imgs_x_grad_translated, axis=(1, 2, 3))
            # Y gradients
            imgs_y_grad = (imgs[:, :-2] - imgs[:, 2:]) / 2
            imgs_y_grad = tf.concat([(imgs[:, :1] - imgs[:, 1:2]),
                                     imgs_y_grad,
                                     (imgs[:, -2:-1] - imgs[:, -1:])], axis=1)
            imgs_y_grad_translated = tf.contrib.image.translate(
                imgs_y_grad, tf.stack([translates_zero, translates_y], axis=1),
                interpolation=interpolation)
            translates_y_grad = tf.reduce_sum(img_translated_grads * imgs_y_grad_translated, axis=(1, 2, 3))
            # Complete gradient
            translates_grad = tf.stack([translates_x_grad, translates_y_grad], axis=1)
            return None, translates_grad
        return imgs_translated, grad
    

    Note that in this case I am not returning any gradient for the images, since these will not be optimized (but if you wanted that, you could in principle use the builtin gradient for the translation operation).

    I tested this for a simple use case of translating an image so its center had the highest value:

    import tensorflow as tf
    import numpy as np
    
    @tf.custom_gradient
    def my_img_translate(imgs, translates):
        # Interpolation model has to be fixed due to limitations of tf.custom_gradient
        interpolation = 'NEAREST'
        imgs_translated = tf.contrib.image.translate(imgs, translates, interpolation=interpolation)
        def grad(img_translated_grads):
            translates_x = translates[:, 0]
            translates_y = translates[:, 1]
            translates_zero = tf.zeros_like(translates_x)
            # X gradients
            imgs_x_grad = (imgs[:, :, :-2] - imgs[:, :, 2:]) / 2
            imgs_x_grad = tf.concat([(imgs[:, :, :1] - imgs[:, :, 1:2]),
                                     imgs_x_grad,
                                     (imgs[:, :, -2:-1] - imgs[:, :, -1:])], axis=2)
            imgs_x_grad_translated = tf.contrib.image.translate(
                imgs_x_grad, tf.stack([translates_x, translates_zero], axis=1),
                interpolation=interpolation)
            translates_x_grad = tf.reduce_sum(img_translated_grads * imgs_x_grad_translated, axis=(1, 2, 3))
            # Y gradients
            imgs_y_grad = (imgs[:, :-2] - imgs[:, 2:]) / 2
            imgs_y_grad = tf.concat([(imgs[:, :1] - imgs[:, 1:2]),
                                     imgs_y_grad,
                                     (imgs[:, -2:-1] - imgs[:, -1:])], axis=1)
            imgs_y_grad_translated = tf.contrib.image.translate(
                imgs_y_grad, tf.stack([translates_zero, translates_y], axis=1),
                interpolation=interpolation)
            translates_y_grad = tf.reduce_sum(img_translated_grads * imgs_y_grad_translated, axis=(1, 2, 3))
            # Complete gradient
            translates_grad = tf.stack([translates_x_grad, translates_y_grad], axis=1)
            return None, translates_grad
        return imgs_translated, grad
    
    # Test operations
    imgs = tf.placeholder(tf.float32, [None, None, None, None])
    translates = tf.Variable([0, 0], dtype=tf.float32)
    translates_tiled = tf.tile(translates[tf.newaxis], (tf.shape(imgs)[0], 1))
    imgs_translated = my_img_translate(imgs, translates_tiled)
    imgs_midpoint = imgs_translated[:, tf.shape(imgs_translated)[1] // 2, tf.shape(imgs_translated)[2] // 2]
    loss = -tf.reduce_sum(tf.square(imgs_midpoint))
    train_op = tf.train.GradientDescentOptimizer(10).minimize(loss)
    init_op = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        # Make test image
        xs, ys = np.meshgrid(np.linspace(-2, 1, 100), np.linspace(-1, 2, 75))
        test_img = (1 / (1 + np.square(xs))) * (1 / (1 + np.square(ys)))
        test_img /= np.max(test_img)
        test_img_batch = test_img[np.newaxis, :, :, np.newaxis]
        # Train
        sess.run(init_op)
        for _ in range(100):
            sess.run(train_op, feed_dict={imgs: test_img_batch})
        # Show result
        test_img_result = sess.run(imgs_translated, feed_dict={imgs: test_img_batch})[0, :, :, 0]
        plt.figure()
        plt.subplot(121)
        plt.imshow(test_img)
        plt.subplot(122)
        plt.imshow(test_img_result)
    

    Result:

    0 讨论(0)
提交回复
热议问题