In the G-WAN KV options, KV_INCR_KEY
will use the 1st field as the primary key.
That means there is a function which increments atomically already built
Thanks for Gil's helpful guidance.
Now, I can do it by myself.
I change the code in persistence.c, as below:
firstly, i changed the definition of val in data to volatile.
//data[0]->val++;
//xbuf_xcat(reply, "Value: %d", data[0]->val);
int new_count, loops=50000000, time1, time2, time;
time1=getus();
for(int i; i<loops; i++){
new_count = __sync_add_and_fetch(&data[0]->val, 1);
}
time2=getus();
time=loops/(time2-time1);
time=time*1000;
xbuf_xcat(reply, "Value: %d, time: %d incr_ops/msec", new_count, time);
I got 52,000 incr_operations/msec with my old E2180 CPU.
So, with GCC compiler I can do it by myself.
thanks again.
There was ample discussion about this on the old G-WAN forum, and people were invited to share their experiences with atomic operations in order to build a rich list of documented functions, platform by platform.
Atomic operations are not portable because they address the CPU directly. It means that the code for Intel x86 (32-bit) and Intel AMD64 (64-bit) is different. Each platform (ARM, Power7, Cell, Motorola, etc.) has its own atomic instruction sets.
Such a list was not published in the gwan.h
file so far because basic operations are easy to find (the GCC compiler offers several atomic intrinsics as C extensions) but more sophisticated operations are less obvious (needs asm
skills) and people will build them as they need - for very specific uses in their code.
Software Engineering is always a balance between what can be made available at the lowest possible cost to entry (like the G-WAN KV store, which uses a small number of functions) and how it actually works (which is far less simple to follow).
So, beyond the obvious (incr/decr, set/get), to learn more about atomic operations, use Google, find CPU instruction sets manuals, and arm yourself with courage!