Cumulative Sum using 2 columns

后端 未结 2 1223
盖世英雄少女心
盖世英雄少女心 2021-01-15 22:59

I am trying to create a column that does a cumulative sum using 2 columns , please see example of what I am trying to do :@Faith Akici

  index lodgement_yea         


        
相关标签:
2条回答
  • 2021-01-15 23:58

    You are almost there, Ian!

    cumsum() method calculates the cumulative sum of a Pandas column. You are looking for that applied to the grouped words. Therefore:

    In [303]: df_2['cumsum'] = df_2.groupby(['words'])['sum'].cumsum()
    
    In [304]: df_2
    Out[304]: 
       index  lodgement_year      words  sum  cum_sum  cumsum
    0      0            2000        the   14       14      14
    1      1            2000  australia   10       10      10
    2      2            2000       word   12       12      12
    3      3            2000      brand    8        8       8
    4      4            2000      fresh    5        5       5
    5      5            2001        the    8       22      22
    6      6            2001  australia    3       13      13
    7      7            2001     banana    1        1       1
    8      8            2001      brand    7       15      15
    9      9            2001      fresh    1        6       6
    

    Please comment if this fails on your bigger data set, and we'll work on a possibly more accurate version of this.

    0 讨论(0)
  • 2021-01-16 00:00

    If we only need to consider the column 'words', we might need to loop through unique values of the words

    for unique_words in df_2.words.unique():
        if 'cum_sum' not in df_2:
            df_2['cum_sum'] = df_2.loc[df_2['words'] == unique_words]['sum'].cumsum()
        else:
            df_2.update(pd.DataFrame({'cum_sum': df_2.loc[df_2['words'] == unique_words]['sum'].cumsum()}))
    

    above will result to:

    >>> print(df_2)
      lodgement_year  sum      words  cum_sum
    0           2000   14        the     14.0
    1           2000   10  australia     10.0
    2           2000   12       word     12.0
    3           2000    8      brand      8.0
    4           2000    5      fresh      5.0
    5           2001    8        the     22.0
    6           2001    3  australia     13.0
    7           2001    1     banana      1.0
    8           2001    7      brand     15.0
    9           2001    1      fresh      6.0
    
    0 讨论(0)
提交回复
热议问题