In IEEE-754 binary double, we need to consider 1.1 and 1.2 in the binary representation:
1.2 = 0b1.001100110011001100110011001100110011001100110011001100110011...
1.1 = 0b1.000110011001100110011001100110011001100110011001100110011001...
note that we need infinitely many bits to represent them exactly in binary. double only has 53 bits of significance, we have to chop off the numbers:
1.2 = 0b1.001100110011001100110011001100110011001100110011001100110011...
1.1 = 0b1.000110011001100110011001100110011001100110011001100110011001...
^ round from here
==>
1.2 ~ 0b1.0011001100110011001100110011001100110011001100110011
(= exactly 1.1999999999999999555910790149937383830547332763671875)
1.1 ~ 0b1.0001100110011001100110011001100110011001100110011010
(= exactly 1.100000000000000088817841970012523233890533447265625)
Hence 1.2 - 1.1 is:
1.2 ~ 0b1.0011001100110011001100110011001100110011001100110011
- 1.1 ~ 0b1.0001100110011001100110011001100110011001100110011010
————————————————————————————————————————————————————————————————
0b0.00011001100110011001100110011001100110011001100110010000
(= exactly 0.09999999999999986677323704498121514916419982910156250000)
We can actually compute 60 / 0.0999999999999998667732370449812151491641998291015625 exactly, which gives
600.0000000000007993605777301137740672368493927467455286920109359612256820927...
^ 16th significant figure
that matches OP's result of
600.0000000000008