I would like to convert a sentence to an array of one-hot vector. These vector would be the one-hot representation of the alphabet. It would look like the following:
Here's a vectorized approach using NumPy broadcasting to give us a (N,26)
shaped array -
ints = np.fromstring("hello",dtype=np.uint8)-97
out = (ints[:,None] == np.arange(26)).astype(int)
If you are looking for performance, I would suggest using an initialized array and then assign -
out = np.zeros((len(ints),26),dtype=int)
out[np.arange(len(ints)), ints] = 1
Sample run -
In [153]: ints = np.fromstring("hello",dtype=np.uint8)-97
In [154]: ints
Out[154]: array([ 7, 4, 11, 11, 14], dtype=uint8)
In [155]: out = (ints[:,None] == np.arange(26)).astype(int)
In [156]: print out
[[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]]
You asked about "sentences" but your example provided only a single word, so I'm not sure what you wanted to do about spaces. But as far as single words are concerned, your example could be implemented with:
def onehot(ltr):
return [1 if i==ord(ltr) else 0 for i in range(97,123)]
def onehotvec(s):
return [onehot(c) for c in list(s.lower())]
onehotvec("hello")
[[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
This is a common task in Recurrent Neural Networks and there's a specific function just for this purpose in tensorflow
, if you'd like to use it.
alphabets = {'a' : 0, 'b': 1, 'c':2, 'd':3, 'e':4, 'f':5, 'g':6, 'h':7, 'i':8, 'j':9, 'k':10, 'l':11, 'm':12, 'n':13, 'o':14}
idxs = [alphabets[ch] for ch in 'hello']
print(idxs)
# [7, 4, 11, 11, 14]
# @divakar's approach
idxs = np.fromstring("hello",dtype=np.uint8)-97
# or for more clear understanding, use:
idxs = np.fromstring('hello', dtype=np.uint8) - ord('a')
one_hot = tf.one_hot(idxs, 26, dtype=tf.uint8)
sess = tf.InteractiveSession()
In [15]: one_hot.eval()
Out[15]:
array([[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Just compare the letters in your passed string to a given alphabet:
def string_vectorizer(strng, alphabet=string.ascii_lowercase):
vector = [[0 if char != letter else 1 for char in alphabet]
for letter in strng]
return vector
Note that, with a custom alphabet (e.g. "defbcazk", the columns will be ordered as each element appears in the original list).
The output of string_vectorizer('hello')
:
[[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
With pandas, you can use pd.get_dummies by passing a categorical Series:
import pandas as pd
import string
low = string.ascii_lowercase
pd.get_dummies(pd.Series(list(s)).astype('category', categories=list(low)))
Out:
a b c d e f g h i j ... q r s t u v w x y z
0 0 0 0 0 0 0 0 1 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
[5 rows x 26 columns]