When I implement this part of this python code in Azure Databricks:
class clustomTransformations(Transformer):
custom_transformer = customT
It seems like there is no easy workaround but to try and implement the _to_java method, as is suggested here for StopWordsRemover: Serialize a custom transformer using python to be used within a Pyspark ML pipeline
def _to_java(self):
"""
Convert this instance to a dill dump, then to a list of strings with the unicode integer values of each character.
Use this list as a set of dumby stopwords and store in a StopWordsRemover instance
:return: Java object equivalent to this instance.
"""
dmp = dill.dumps(self)
pylist = [str(ord(d)) for d in dmp] # convert byes to string integer list
pylist.append(PysparkObjId._getPyObjId()) # add our id so PysparkPipelineWrapper can id us.
sc = SparkContext._active_spark_context
java_class = sc._gateway.jvm.java.lang.String
java_array = sc._gateway.new_array(java_class, len(pylist))
for i in xrange(len(pylist)):
java_array[i] = pylist[i]
_java_obj = JavaParams._new_java_obj(PysparkObjId._getCarrierClass(javaName=True), self.uid)
_java_obj.setStopWords(java_array)
return _java_obj