I\'m having trouble for a seemingly incredibly easy operation. What is the most succint way to just get a percent of total from a group by operation such as df.groupby
How about:
df = pd.DataFrame({'A': {0: 77, 1: 77, 2: 77, 3: 77, 4: 77, 5: 77, 6: 77, 7: 72, 8: 34, 9: None},
'B': {0: 3, 1: 52, 2: 58, 3: 3, 4: 31, 5: 53, 6: 2, 7: 25, 8: 41, 9: 95},
'C': {0: 98, 1: 99, 2: 61, 3: 93, 4: 99, 5: 51, 6: 9, 7: 78, 8: 34, 9: 27}})
>>> df.groupby('A').size().divide(sum(df['A'].notnull()))
A
34 0.111111
72 0.111111
77 0.777778
dtype: float64
>>> df
A B C
0 77 3 98
1 77 52 99
2 77 58 61
3 77 3 93
4 77 31 99
5 77 53 51
6 77 2 9
7 72 25 78
8 34 41 34
9 NaN 95 27
I don't know if I'm missing something, but looks like you could do something like this:
df.groupby('A').size() * 100 / len(df)
or
df.groupby('A').size() * 100 / df.shape[0]
Getting good performance (3.73s) on DF with shape (3e6,59) by using:
df.groupby('col1').size().apply(lambda x: float(x) / df.groupby('col1').size().sum()*100)