The documentation for sklearn.cluster.AgglomerativeClustering mentions that,
when varying the number of clusters and using caching, it may be advant
You set a cacheing directory with the paramater memory = 'mycachedir'
and then if you set compute_full_tree=True
, when you rerun fit
with different values of n_clusters
, it will used the cached tree rather than recomputing each time. To give you an example of how to do this with sklearn's gridsearch API:
from sklearn.cluster import AgglomerativeClustering
from sklearn.grid_search import GridSearchCV
ac = AgglomerativeClustering(memory='mycachedir',
compute_full_tree=True)
classifier = GridSearchCV(ac,
{n_clusters: range(2,6)},
scoring = 'adjusted_rand_score',
n_jobs=-1, verbose=2)
classifier.fit(X,y)
I know it's an old question, however the solution below might turn out helpful
# scores = input matrix
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import cut_tree
from sklearn.metrics import silhouette_score
from sklearn.metrics.pairwise import euclidean_distances
linkage_mat = linkage(scores, method="ward")
euc_scores = euclidean_distances(scores)
n_l = 2
n_h = scores.shape[0]
silh_score = -2
# Selecting the best number of clusters based on the silhouette score
for i in range(n_l, n_h):
local_labels = list(cut_tree(linkage_mat, n_clusters=i).flatten())
sc = silhouette_score(
euc_scores,
metric="precomputed",
labels=local_labels,
random_state=42)
if silh_score < sc:
silh_score = sc
labels = local_labels
n_clusters = len(set(labels))
print(f"Optimal number of clusters: {n_clusters}")
print(f"Best silhouette score: {silh_score}")
# ...