I have a dataframe like this:
data_ = list(range(106))
index_ = pd.period_range(\'3/1/2004\', \'12/1/2012\', freq=\'M\')
df2_ = pd.DataFrame(data = data_, i
With regards to constructing the timedelta, datetime.timdelta()
doesn’t have a parameter to specify months, so it’s probably convenient to stick to pd.date_range()
. However, I found that objects of type pandas.tslib.Timestamp
don’t play nice with matplotlib ticks so you could convert them to datetime.date
objects like so
index_ = [pd.to_datetime(date, format='%Y-%m-%d').date()
for date in pd.date_range('2004-03-01', '2012-12-01', freq="M")]
It’s possible to add gridlines and customise axes labels by first defining a matplotlib axes object, and then passing this to DataFrame.plot()
ax = plt.axes()
df2_.plot(ax=ax)
Now you can add vertical gridlines to your plot
ax.xaxis.grid(True)
And specify quarterly xticks labels by using matplotlib.dates.MonthLocator
and setting the interval to 3
ax.xaxis.set_major_locator(dates.MonthLocator(interval=3))
And finally, I found the ticks to be to be very crowded so I formatted them to get a nicer fit
ax.xaxis.set_major_formatter(dates.DateFormatter('%b %y'))
labels = ax.get_xticklabels()
plt.setp(labels, rotation=85, fontsize=8)
To produce the following: