Is it possible to replace the usage of Google Cloud Storage buckets with an alternative on-premises solution so that it is possible to run e.g. Kubeflow Pipelines completely
Yes it is possible. You can use minio, it's like s3/gs but it runs on a persistent volume of your on-premises storage.
Here are the instructions on how to use it as a kfserving inference storage:
Validate that minio is running in your kubeflow installation:
$ kubectl get svc -n kubeflow |grep minio
minio-service ClusterIP 10.101.143.255 <none> 9000/TCP 81d
Enable a tunnel for your minio:
$ kubectl port-forward svc/minio-service -n kubeflow 9000:9000
Forwarding from 127.0.0.1:9000 -> 9000
Forwarding from [::1]:9000 -> 9000
Browse http://localhost:9000 to get to the minio UI and create a bucket/upload your model. Credentials minio/minio123
. Alternatively you can use the mc
command to do it from your terminal:
$ mc ls minio/models/flowers/0001/
[2020-03-26 13:16:57 CET] 1.7MiB saved_model.pb
[2020-04-25 13:37:09 CEST] 0B variables/
Create a secret&serviceaccount for the minio access, note that the s3-endpoint defines the path to the minio, keyid&acceskey are the credentials encoded in base64:
$ kubectl get secret mysecret -n homelab -o yaml
apiVersion: v1
data:
awsAccessKeyID: bWluaW8=
awsSecretAccessKey: bWluaW8xMjM=
kind: Secret
metadata:
annotations:
serving.kubeflow.org/s3-endpoint: minio-service.kubeflow:9000
serving.kubeflow.org/s3-usehttps: "0"
name: mysecret
namespace: homelab
$ kubectl get serviceAccount -n homelab sa -o yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: sa
namespace: homelab
secrets:
- name: mysecret
Finally, create your inferenceservice
as follows:
$ kubectl get inferenceservice tensorflow-flowers -n homelab -o yaml
apiVersion: serving.kubeflow.org/v1alpha2
kind: InferenceService
metadata:
name: tensorflow-flowers
namespace: homelab
spec:
default:
predictor:
serviceAccountName: sa
tensorflow:
storageUri: s3://models/flowers