I have a dataFrame like this:
id asn orgs
0 3320 {\'Deutsche Telekom AG\': 2288}
1 47886 {\'Joyent\': 16, \'Equinix (Netherlands) B.V.\': 7}
2
Another approach define a function that just calls min
on the dict and return a Series so you can assign to multiple columns (function body taken from @Alex Martelli's answer):
In [17]:
def func(x):
k = min(x, key=x.get)
return pd.Series([k, x[k]])
df[['orgs', 'value']] = df['orgs'].apply(func)
df
Out[17]:
asn id orgs value
0 3320 0 Deutsche Telekom AG 2288
1 47886 1 Equinix (Netherlands) B.V. 7
2 47601 2 fusion services 1024
3 33438 3 Highwinds Network Group 893
EDIT
If your data has empty dicss, then you can just test the len
:
In [34]:
df = pd.DataFrame({'id':[0,1,2,3,4],
'asn':[3320,47886,47601,33438,56],
'orgs':[{'Deutsche Telekom AG': 2288},
{'Joyent': 16, 'Equinix (Netherlands) B.V.': 7},
{'fusion services': 1024, 'GCE Global Maritime':16859},
{'Highwinds Network Group': 893},{}]})
df
Out[34]:
asn id orgs
0 3320 0 {'Deutsche Telekom AG': 2288}
1 47886 1 {'Equinix (Netherlands) B.V.': 7, 'Joyent': 16}
2 47601 2 {'GCE Global Maritime': 16859, 'fusion service...
3 33438 3 {'Highwinds Network Group': 893}
4 56 4 {}
In [36]:
def func(x):
if len(x) > 0:
k = min(x, key=x.get)
return pd.Series([k, x[k]])
return pd.Series([np.NaN, np.NaN])
df[['orgs', 'value']] = df['orgs'].apply(func)
df
Out[36]:
asn id orgs value
0 3320 0 Deutsche Telekom AG 2288
1 47886 1 Equinix (Netherlands) B.V. 7
2 47601 2 fusion services 1024
3 33438 3 Highwinds Network Group 893
4 56 4 NaN NaN
This should work:
In [1]: import pandas as pd
In [2]: import operator
In [3]: df = pd.DataFrame({ 'id' : [0,1,2,3],
...: 'asn' : [3320, 47886, 47601, 33438],
...: 'orgs' : [{'Deutsche Telekom AG': 2288}, {'Joyent': 16, 'Equinix (Netherlands) B.V.': 7}, {'fusion services': 1024, 'GCE Global Maritime':16859}, {'Highwinds Network Group': 893}]
...: })
In [4]: df.orgs, df['value'] = zip(*df.orgs.apply(lambda x : sorted(x.items(),key=operator.itemgetter(1),reverse=True)[0]))
In [5]: df
Out[5]:
asn id orgs value
0 3320 0 Deutsche Telekom AG 2288
1 47886 1 Joyent 16
2 47601 2 GCE Global Maritime 16859
3 33438 3 Highwinds Network Group 893
I used zip(* <first element of sorted dict items>)
and assigned them to df.orgs
and df.value
.
For empty dictionaries:
In [3]: df = pd.DataFrame({ 'id' : [0,1,2,3],
...: 'asn' : [3320, 47886, 47601, 33438],
...: 'orgs' : [{'Deutsche Telekom AG': 2288}, {'Joyent': 16, 'Equinix (Netherlands) B.V.': 7}, {'fusion services': 1024, 'GCE Global Maritime':16859}, {}]
...: })
In [4]: df.orgs.apply(lambda x : sorted(x.items(),key=operator.itemgetter(1),reverse=True)[0] if len(x) else ('',''))
Out[4]:
0 (Deutsche Telekom AG, 2288)
1 (Joyent, 16)
2 (GCE Global Maritime, 16859)
3 (, )
Name: orgs, dtype: object
In [5]: df.orgs, df['value'] = zip(*df.orgs.apply(lambda x : sorted(x.items(),key=operator.itemgetter(1),reverse=True)[0] if len(x) else ('','')))
In [6]: df
Out[6]:
asn id orgs value
0 3320 0 Deutsche Telekom AG 2288
1 47886 1 Joyent 16
2 47601 2 GCE Global Maritime 16859
3 33438 3