Who wants to help me with my homework?
I\'m try to implement Fermat\'s primality test in Java using BigIntegers. My implementation is as follows, but unfortunately i
Your use of the particular BigInteger constructor is reasonable, but you should use a rejection method to select a fermat base a. Here is a slight modification of your method in a class which also uses exactly one Random object:
import java.math.BigInteger;
import java.util.Random;
public class FermatTestExample
{
private final static Random rand = new Random();
private static BigInteger getRandomFermatBase(BigInteger n)
{
// Rejection method: ask for a random integer but reject it if it isn't
// in the acceptable set.
while (true)
{
final BigInteger a = new BigInteger (n.bitLength(), rand);
// must have 1 <= a < n
if (BigInteger.ONE.compareTo(a) <= 0 && a.compareTo(n) < 0)
{
return a;
}
}
}
public static boolean checkPrime(BigInteger n, int maxIterations)
{
if (n.equals(BigInteger.ONE))
return false;
for (int i = 0; i < maxIterations; i++)
{
BigInteger a = getRandomFermatBase(n);
a = a.modPow(n.subtract(BigInteger.ONE), n);
if (!a.equals(BigInteger.ONE))
return false;
}
return true;
}
public static void main(String[] args)
{
System.out.printf("checkprime(2) is %b%n", checkPrime(BigInteger.valueOf(2L), 20));
System.out.printf("checkprime(5) is %b%n", checkPrime(BigInteger.valueOf(5L), 20));
System.out.printf("checkprime(7) is %b%n", checkPrime(BigInteger.valueOf(7L), 20));
System.out.printf("checkprime(9) is %b%n", checkPrime(BigInteger.valueOf(9L), 20));
}
}
a should be "pick a randomly in the range (1, n − 1]" and I don't really see that happening. You could print a to check that.
As for how to do that:
BigInteger a = BigInteger.valueOf(random.nextInt(n-2)+2);
e.g. You shouldn't use the BigInteger constructor with a Random argument; that's just a source of randomness, but a should be a random value.
The 'random.nextInt(n-1)+1' comes from the definition of nextInt which, given argument k, returns a random value 0 up to and including k-1. And you want a to be larger than 1 and smaller than n.