Return RDD of largest N values from another RDD in SPARK

后端 未结 2 755
粉色の甜心
粉色の甜心 2021-01-14 12:08

I\'m trying to filter an RDD of tuples to return the largest N tuples based on key values. I need the return format to be an RDD.

So the RDD:

[(4, \'         


        
相关标签:
2条回答
  • 2021-01-14 12:42

    With RDD

    A quick but not particularly efficient solution is to follow sortByKey use zipWithIndex and filter:

    n = 3
    rdd = sc.parallelize([(4, 'a'), (12, 'e'), (2, 'u'), (49, 'y'), (6, 'p')])
    
    rdd.sortByKey().zipWithIndex().filter(lambda xi: xi[1] < n).keys()
    

    If n is relatively small compared to RDD size a little bit more efficient approach is to avoid full sort:

    import heapq
    
    def key(kv):
        return kv[0]
    
    top_per_partition = rdd.mapPartitions(lambda iter: heapq.nlargest(n, iter, key))
    top_per_partition.sortByKey().zipWithIndex().filter(lambda xi: xi[1] < n).keys()
    

    If keys are much smaller than values and order of final output doesn't matter then filter approach can work just fine:

    keys = rdd.keys()
    identity = lambda x: x
    
    offset = (keys
        .mapPartitions(lambda iter: heapq.nlargest(n, iter))
        .sortBy(identity)
        .zipWithIndex()
        .filter(lambda xi: xi[1] < n)
        .keys()
        .max())
    
    rdd.filter(lambda kv: kv[0] <= offset)
    

    Also it won't keep exact n values in case of ties.

    With DataFrames

    You can just orderBy and limit:

    from pyspark.sql.functions import col
    
    rdd.toDF().orderBy(col("_1").desc()).limit(n)
    
    0 讨论(0)
  • 2021-01-14 12:45

    A less effort approach since you only want to convert take(N) results to new RDD.

    sc.parallelize(yourSortedRdd.take(Nth))
    
    0 讨论(0)
提交回复
热议问题