Tensorflow/Keras Conv2D layers with padding='SAME' behave strangely

前端 未结 1 462
佛祖请我去吃肉
佛祖请我去吃肉 2021-01-14 11:26

My question:

A straightforward experiment that I conducted showed that using padding=\'SAME\' in a conv2d layer in Keras/TF is differen

相关标签:
1条回答
  • 2021-01-14 12:07

    padding='Same' in Keras means padding is added as required to make up for overlaps when the input size and kernel size do not perfectly fit.

    Example of padding='Same':

    # Importing dependency
    import keras
    from keras.models import Sequential
    from keras.layers import Conv2D
    
    # Create a sequential model
    model = Sequential()
    
    # Convolutional Layer
    model.add(Conv2D(filters=24, input_shape=(5,5,1), kernel_size=(2,2), strides =(2,2) ,padding='Same'))
    
    # Model Summary
    model.summary()
    

    Output of the code -

    Model: "sequential_20"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d_28 (Conv2D)           (None, 3, 3, 24)          120       
    =================================================================
    Total params: 120
    Trainable params: 120
    Non-trainable params: 0
    _________________________________________________________________
    

    Pictorial Representation: Below image shows how the padding for the input (input_shape=(5,5,1), kernel_size=(2,2), strides =(2,2)) when padding='Same'.

    ------------------------------------------------------------------------------------------------------------------

    padding='Valid' in Keras means no padding is added.

    Example of padding='Valid': Have used same input for Conv2D that we used above for padding = 'Same' .i.e. (input_shape=(5,5,1), kernel_size=(2,2), strides =(2,2))

    # Importing dependency
    import keras
    from keras.models import Sequential
    from keras.layers import Conv2D
    
    # Create a sequential model
    model = Sequential()
    
    # Convolutional Layer
    model.add(Conv2D(filters=24, input_shape=(5,5,1), kernel_size=(2,2), strides =(2,2) ,padding='Valid'))
    
    # Model Summary
    model.summary()
    

    Output of the code -

    Model: "sequential_21"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d_29 (Conv2D)           (None, 2, 2, 24)          120       
    =================================================================
    Total params: 120
    Trainable params: 120
    Non-trainable params: 0
    _________________________________________________________________
    

    Pictorial Representation: Below image shows there is no padding added for the input (input_shape=(5,5,1), kernel_size=(2,2), strides =(2,2)) when padding='Valid'.

    ------------------------------------------------------------------------------------------------------------------

    Now lets try same code that we used for padding='Valid' for the input (input_shape=(6,6,1), kernel_size=(2,2), strides =(2,2)). Here padding='Valid' should behave same as padding='Same'.

    Code -

    # Importing dependency
    import keras
    from keras.models import Sequential
    from keras.layers import Conv2D
    
    # Create a sequential model
    model = Sequential()
    
    # Convolutional Layer
    model.add(Conv2D(filters=24, input_shape=(6,6,1), kernel_size=(2,2), strides =(2,2) ,padding='Valid'))
    
    # Model Summary
    model.summary()
    

    Output of the code -

    Model: "sequential_22"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d_30 (Conv2D)           (None, 3, 3, 24)          120       
    =================================================================
    Total params: 120
    Trainable params: 120
    Non-trainable params: 0
    _________________________________________________________________
    
    0 讨论(0)
提交回复
热议问题