How to determine rotation of a shape?

后端 未结 2 1561
隐瞒了意图╮
隐瞒了意图╮ 2021-01-14 07:09

I have following shape.

It may be rotated by unknown angle. I want to determine its rotation in reference to horizontal axis (so shape abov

相关标签:
2条回答
  • 2021-01-14 07:42

    I adapted my answer from here: https://stackoverflow.com/a/23993030/2393191 It gives quite good results:

    inline void getCircle(cv::Point2f& p1, cv::Point2f& p2, cv::Point2f& p3, cv::Point2f& center, float& radius)
    {
        float x1 = p1.x;
        float x2 = p2.x;
        float x3 = p3.x;
    
        float y1 = p1.y;
        float y2 = p2.y;
        float y3 = p3.y;
    
        // PLEASE CHECK FOR TYPOS IN THE FORMULA :)
        center.x = (x1*x1 + y1*y1)*(y2 - y3) + (x2*x2 + y2*y2)*(y3 - y1) + (x3*x3 + y3*y3)*(y1 - y2);
        center.x /= (2 * (x1*(y2 - y3) - y1*(x2 - x3) + x2*y3 - x3*y2));
    
        center.y = (x1*x1 + y1*y1)*(x3 - x2) + (x2*x2 + y2*y2)*(x1 - x3) + (x3*x3 + y3*y3)*(x2 - x1);
        center.y /= (2 * (x1*(y2 - y3) - y1*(x2 - x3) + x2*y3 - x3*y2));
    
        radius = sqrt((center.x - x1)*(center.x - x1) + (center.y - y1)*(center.y - y1));
    }
    
    
    
    std::vector<cv::Point2f> getPointPositions(cv::Mat binaryImage)
    {
        std::vector<cv::Point2f> pointPositions;
    
        for (unsigned int y = 0; y<binaryImage.rows; ++y)
        {
            //unsigned char* rowPtr = binaryImage.ptr<unsigned char>(y);
            for (unsigned int x = 0; x<binaryImage.cols; ++x)
            {
                //if(rowPtr[x] > 0) pointPositions.push_back(cv::Point2i(x,y));
                if (binaryImage.at<unsigned char>(y, x) > 0) pointPositions.push_back(cv::Point2f(x, y));
            }
        }
    
        return pointPositions;
    }
    
    
    float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector<cv::Point2f> & inlierSet)
    {
        unsigned int counter = 0;
        unsigned int inlier = 0;
        float minInlierDist = 2.0f;
        float maxInlierDistMax = 100.0f;
        float maxInlierDist = radius / 25.0f;
        if (maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;
        if (maxInlierDist>maxInlierDistMax) maxInlierDist = maxInlierDistMax;
    
        // choose samples along the circle and count inlier percentage
        for (float t = 0; t<2 * 3.14159265359f; t += 0.05f)
        {
            counter++;
            float cX = radius*cos(t) + center.x;
            float cY = radius*sin(t) + center.y;
    
            if (cX < dt.cols)
                if (cX >= 0)
                    if (cY < dt.rows)
                        if (cY >= 0)
                            if (dt.at<float>(cY, cX) < maxInlierDist)
                            {
                                inlier++;
                                inlierSet.push_back(cv::Point2f(cX, cY));
                            }
        }
    
        return (float)inlier / float(counter);
    }
    
    float evaluateCircle(cv::Mat dt, cv::Point2f center, float radius)
    {
    
        float completeDistance = 0.0f;
        int counter = 0;
    
        float maxDist = 1.0f;   //TODO: this might depend on the size of the circle!
    
        float minStep = 0.001f;
        // choose samples along the circle and count inlier percentage
    
        //HERE IS THE TRICK that no minimum/maximum circle is used, the number of generated points along the circle depends on the radius.
        // if this is too slow for you (e.g. too many points created for each circle), increase the step parameter, but only by factor so that it still depends on the radius
    
        // the parameter step depends on the circle size, otherwise small circles will create more inlier on the circle
        float step = 2 * 3.14159265359f / (6.0f * radius);
        if (step < minStep) step = minStep; // TODO: find a good value here.
    
        //for(float t =0; t<2*3.14159265359f; t+= 0.05f) // this one which doesnt depend on the radius, is much worse!
        for (float t = 0; t<2 * 3.14159265359f; t += step)
        {
            float cX = radius*cos(t) + center.x;
            float cY = radius*sin(t) + center.y;
    
            if (cX < dt.cols)
                if (cX >= 0)
                    if (cY < dt.rows)
                        if (cY >= 0)
                            if (dt.at<float>(cY, cX) <= maxDist)
                            {
                                completeDistance += dt.at<float>(cY, cX);
                                counter++;
                            }
    
        }
    
        return counter;
    }
    
    
    
    
    int main(int argc, char* argv[])
    {
    
        cv::Mat input = cv::imread("C:/StackOverflow/Input/rotatedShape1.png", cv::IMREAD_GRAYSCALE);
        std::string outString = "C:/StackOverflow/Output/rotatedShape1.png";
    
        cv::Mat output;
        cv::cvtColor(input, output, cv::COLOR_GRAY2BGR);
    
        std::vector<std::vector<cv::Point> > contours;
        cv::findContours(input, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE);
    
        std::vector<cv::Point> biggestContour;
        double biggestArea = 0;
        for (int i = 0; i < contours.size(); ++i)
        {
            double cArea = cv::contourArea(contours[i]);
            if (cArea > biggestArea)
            {
                biggestArea = cArea;
                biggestContour = contours[i];
            }
        }
    
        if (biggestContour.size() == 0)
        {
            std::cout << "error: no contour found. Press enter to quit." << std::endl;
            std::cin.get();
            return 0;
        }
    
    
    
        cv::Mat mask = cv::Mat::zeros(input.size(), input.type());
        std::vector < std::vector<cv::Point> > tmp;
        tmp.push_back(biggestContour);
        cv::drawContours(mask, tmp, 0, cv::Scalar::all(255), 1); // contour points in the image
    
        std::vector<cv::Point2f> circlesList;
    
        unsigned int numberOfCirclesToDetect = 2;   // TODO: if unknown, you'll have to find some nice criteria to stop finding more (semi-) circles
    
        for (unsigned int j = 0; j<numberOfCirclesToDetect; ++j)
        {
            std::vector<cv::Point2f> edgePositions;
            //for (int i = 0; i < biggestContour.size(); ++i) edgePositions.push_back(biggestContour[i]);
            edgePositions = getPointPositions(mask);
    
    
    
            std::cout << "number of edge positions: " << edgePositions.size() << std::endl;
    
            // create distance transform to efficiently evaluate distance to nearest edge
            cv::Mat dt;
            cv::distanceTransform(255 - mask, dt, CV_DIST_L1, 3);
    
    
    
            unsigned int nIterations = 0;
    
            cv::Point2f bestCircleCenter;
            float bestCircleRadius;
            //float bestCVal = FLT_MAX;
            float bestCVal = -1;
    
            //float minCircleRadius = 20.0f; // TODO: if you have some knowledge about your image you might be able to adjust the minimum circle radius parameter.
            float minCircleRadius = 0.0f;
    
            //TODO: implement some more intelligent ransac without fixed number of iterations
            for (unsigned int i = 0; i<2000; ++i)
            {
                //RANSAC: randomly choose 3 point and create a circle:
                //TODO: choose randomly but more intelligent,
                //so that it is more likely to choose three points of a circle.
                //For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle.
                unsigned int idx1 = rand() % edgePositions.size();
                unsigned int idx2 = rand() % edgePositions.size();
                unsigned int idx3 = rand() % edgePositions.size();
    
                // we need 3 different samples:
                if (idx1 == idx2) continue;
                if (idx1 == idx3) continue;
                if (idx3 == idx2) continue;
    
                // create circle from 3 points:
                cv::Point2f center; float radius;
                getCircle(edgePositions[idx1], edgePositions[idx2], edgePositions[idx3], center, radius);
    
                if (radius < minCircleRadius)continue;
    
    
                //verify or falsify the circle by inlier counting:
                //float cPerc = verifyCircle(dt,center,radius, inlierSet);
                float cVal = evaluateCircle(dt, center, radius);
    
                if (cVal > bestCVal)
                {
                    bestCVal = cVal;
                    bestCircleRadius = radius;
                    bestCircleCenter = center;
                }
    
                ++nIterations;
            }
            std::cout << "current best circle: " << bestCircleCenter << " with radius: " << bestCircleRadius << " and nInlier " << bestCVal << std::endl;
            cv::circle(output, bestCircleCenter, bestCircleRadius, cv::Scalar(0, 0, 255));
    
            //TODO: hold and save the detected circle.
    
            //TODO: instead of overwriting the mask with a drawn circle it might be better to hold and ignore detected circles and dont count new circles which are too close to the old one.
            // in this current version the chosen radius to overwrite the mask is fixed and might remove parts of other circles too!
    
            // update mask: remove the detected circle!
            cv::circle(mask, bestCircleCenter, bestCircleRadius, 0, 10); // here the thickness is fixed which isnt so nice.
    
            circlesList.push_back(bestCircleCenter);
        }
    
    
    
        if (circlesList.size() < 2)
        {
            std::cout << "error: not enough circles found. Press enter." << std::endl;
            std::cin.get();
            return 0;
        }
    
        cv::Point2f centerOfMass = circlesList[0];
        cv::Point2f cogFP = circlesList[1];
        std::cout << cogFP - centerOfMass << std::endl;
        float angle = acos((cogFP - centerOfMass).x / cv::norm(cogFP - centerOfMass)); // scalar product of [1,0] and point
        std::cout << angle * 180 / CV_PI << std::endl;
    
        cv::line(output, centerOfMass, cogFP, cv::Scalar(0, 255, 0), 1);
        cv::circle(output, centerOfMass, 5, cv::Scalar(0, 0, 255), 1);
        cv::circle(output, cogFP, 3, cv::Scalar(255, 0, 0), 1);
    
    
        cv::imwrite(outString, output);
    
        cv::imshow("input", input);
        cv::imshow("output", output);
        cv::waitKey(0);
        return 0;
    }
    

    results:

    0 讨论(0)
  • 2021-01-14 07:51

    here's the simple logic of finding the center of gravity and the furthest contour point from it. It has an offset of 6 degrees for that contour, either because of the actual contour shape, or because of a slightly wrong center of gravity.

    int main(int argc, char* argv[])
    {
    
        //cv::Mat input = cv::imread("C:/StackOverflow/Input/rotatedShape1.png", cv::IMREAD_GRAYSCALE);
        cv::Mat input = cv::imread("C:/StackOverflow/Input/rotatedShape5.png", cv::IMREAD_GRAYSCALE);
        std::string outString = "C:/StackOverflow/Output/rotatedShape5.png";
    
        cv::Mat output;
        cv::cvtColor(input, output, cv::COLOR_GRAY2BGR);
    
        std::vector<std::vector<cv::Point> > contours;
        cv::findContours(input, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE);
    
        std::vector<cv::Point> biggestContour;
        double biggestArea = 0;
        for (int i = 0; i < contours.size(); ++i)
        {
            double cArea = cv::contourArea(contours[i]);
            if (cArea > biggestArea)
            {
                biggestArea = cArea;
                biggestContour = contours[i];
            }
        }
    
        if (biggestContour.size() == 0)
        {
            std::cout << "error: no contour found. Press enter to quit." << std::endl;
            std::cin.get();
            return 0;
        }
    
        cv::Point2f centerOfMass(0,0);
        float invContourSize = 1.0f / biggestContour.size();
        for (int i = 0; i < biggestContour.size(); ++i)
        {
            centerOfMass = centerOfMass + (invContourSize * cv::Point2f(biggestContour[i]));
        }
    
        float furthestDist = 0;
        cv::Point2f furthestPoint = centerOfMass;
        for (int i = 0; i < biggestContour.size(); ++i)
        {
            float cDist = cv::norm(cv::Point2f(biggestContour[i]) - centerOfMass);
            if (cDist > furthestDist)
            {
                furthestDist = cDist;
                furthestPoint = biggestContour[i];
            }
        }
    
        // find points with very similar distance
        float maxDifference = 20; // magic number
        std::vector<cv::Point2f> listOfFurthestPoints;
        for (int i = 0; i < biggestContour.size(); ++i)
        {
            float cDist = cv::norm(cv::Point2f(biggestContour[i]) - furthestPoint);
            if (cDist < maxDifference)
            {
                listOfFurthestPoints.push_back( biggestContour[i] );
                // render:
                cv::circle(output, biggestContour[i], 0, cv::Scalar(255, 0, 255), 0);
            }
        }
    
        cv::Point2f cogFP(0, 0);
        float invListSize = 1.0f / listOfFurthestPoints.size();
        for (int i = 0; i < listOfFurthestPoints.size(); ++i)
        {
            cogFP = cogFP + (invListSize * cv::Point2f(listOfFurthestPoints[i]));
        }
    
        std::cout << cogFP - centerOfMass << std::endl;
        float angle = acos((cogFP - centerOfMass).x / cv::norm(cogFP - centerOfMass)); // scalar product of [1,0] and point
        std::cout << angle * 180 / CV_PI << std::endl;
    
        cv::line(output, centerOfMass, cogFP, cv::Scalar(0, 255, 0), 1);
        cv::circle(output, centerOfMass, 5, cv::Scalar(0, 0, 255), 1);
        cv::circle(output, cogFP, 3, cv::Scalar(255, 0, 0), 1);
    
    
        cv::imwrite(outString, output);
        cv::imshow("input", input);
        cv::imshow("output", output);
        cv::waitKey(0);
        return 0;
    }
    

    this is the ouput for several rotations:

    I would love to try the circle method, using RANSAC to find the best 2 circles, but maybe won't have the time...

    Another way could be to find the turning points of the smoothed contour.

    0 讨论(0)
提交回复
热议问题