Compute percentage for each row in pandas dataframe

前端 未结 2 1035
梦如初夏
梦如初夏 2021-01-14 06:38
                  country_name  country_code  val_code  \\
   United States of America           231                     1   
   United States of America           2         


        
相关标签:
2条回答
  • 2021-01-14 06:55

    You can get the percentages of each column using a lambda function as follows:

    >>> df.iloc[:, 3:].apply(lambda x: x / x.sum())
           y191      y192      y193      y194      y195
    0  0.527231  0.508411  0.490517  0.500544  0.480236
    1  0.013305  0.014088  0.013463  0.013631  0.013713
    2  0.316116  0.324405  0.341373  0.319164  0.323259
    3  0.002006  0.002263  0.002678  0.003206  0.002872
    4  0.141342  0.150833  0.151969  0.163455  0.179920
    

    Your example does not have any duplicate values for val_code, so I'm unsure how you want your data to appear (i.e. show percent of total in column vs. total for each vval_code group.)

    0 讨论(0)
  • 2021-01-14 06:57

    Ge the total for all the columns of interest and then add the percentage column:

    In [35]:
    total = np.sum(df.ix[:,'y191':].values)
    df['percent'] = df.ix[:,'y191':].sum(axis=1)/total * 100
    df
    
    Out[35]:
                   country_name  country_code  val_code      y191      y192  \
    0  United States of America           231         1  47052179  43361966   
    1  United States of America           231         1   1187385   1201557   
    2  United States of America           231         1  28211467  27668273   
    3  United States of America           231         1    179000    193000   
    4  United States of America           231         1  12613922  12864425   
    
           y193      y194      y195    percent  
    0  42736682  43196916  41751928  50.149471  
    1   1172941   1176366   1192173   1.363631  
    2  29742374  27543836  28104317  32.483447  
    3    233338    276639    249688   0.260213  
    4  13240395  14106139  15642337  15.743237  
    

    So np.sum will sum all the values:

    In [32]:
    total = np.sum(df.ix[:,'y191':].values)
    total
    
    Out[32]:
    434899243
    

    We then call .sum(axis=1)/total * 100 on the cols of interest to sum row-wise, divide by the total and multiply by 100 to get a percentage.

    0 讨论(0)
提交回复
热议问题