Update a column based on a condition and groupby

前端 未结 1 1046
南旧
南旧 2021-01-14 06:37

My data is:

Prod   Vend    Capac  Dema   Price
 p1     v2       2      6      1
 p1     v1       3      6      2
 p1     v3       3      6      2
 p2     v1          


        
相关标签:
1条回答
  • 2021-01-14 06:46

    Here's what I would do:

    library(data.table)
    setDT(DT)
    
    DT[order(Price), src := pmin(Capac, pmax(Dema - shift(cumsum(Capac), fill=0), 0)), by=Prod]
    

    we can see it matches:

       Prod Vend Capac Dema Price Source src
    1:   p1   v2     2    6     1      2   2
    2:   p1   v1     3    6     2      3   3
    3:   p1   v3     3    6     2      1   1
    4:   p2   v1     1    1     1      1   1
    5:   p2   v3     2    1     2      0   0
    6:   p2   v2     5    1     2      0   0
    7:   p3   v1     5    3     3      3   3
    8:   p3   v2     3    3     4      0   0
    9:   p3   v3     1    3     5      0   0
    

    The logic, partly in pseudocode:

    • shift(cumsum(Capac), fill=0) is capacity from cheaper vendors

    • max(demand - capacity from cheaper, 0) is residual demand for the vendor

    • min(capacity, residual demand) is how much to source from the vendor

    .


    The dplyr analogue:

    DT %>% arrange(Price) %>% group_by(Prod) %>% 
      mutate(src = pmin(Capac, pmax(Dema - lag(cumsum(Capac), default=0), 0)))
    
    0 讨论(0)
提交回复
热议问题