Optimisation using scipy

前端 未结 2 1273
野趣味
野趣味 2021-01-14 05:04

In the following script:

import numpy as np
from scipy.optimize import minimise

a=np.array(range(4))
b=np.array(range(4,8))

def sm(x,a,b):
      sm=np.zer         


        
相关标签:
2条回答
  • 2021-01-14 05:45

    Your function sm appears to be unbounded. As you increase x, sm will get ever more negative, hence the fact that it is going to -inf.

    Re: comment - if you want to make sm() as close to zero as possible, modify the last line in your function definition to read return abs(sm).

    This minimised the absolute value of the function, bringing it close to zero.

    Result for your example:

    >>> opt = minimize(sm,x0,args=(a,b),method='nelder-mead', options={'xtol': 1e-8,     'disp': True})
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 153
             Function evaluations: 272
    >>> opt
      status: 0
        nfev: 272
     success: True
         fun: 2.8573836630130245e-09
           x: array([-1.24676625,  0.65786454,  0.44383101,  1.73177358])
     message: 'Optimization terminated successfully.'
         nit: 153
    
    0 讨论(0)
  • 2021-01-14 05:49

    Modifying the proposal of FuzzyDuck, I replace sm +=((b-a)**2) which return me the desired result.

    0 讨论(0)
提交回复
热议问题