I have a pandas dataframe defined as follows:
import pandas as pd
headers = [\'Group\', \'Element\', \'Case\', \'Score\', \'Evaluation\'
You can use apply instead of agg to construct all the columns in one go.
result = (
df.groupby('Group').apply(lambda x: [np.max(x.Score),
df.loc[x.Score.idxmax(),'Element'],
df.loc[x.Score.idxmax(),'Case'],
np.min(x.Evaluation)])
.apply(pd.Series)
.rename(columns={0:'Max_score_value',
1:'Max_score_element',
2:'Max_score_case',
3:'Min_evaluation'})
.reset_index()
)
result
Out[9]:
Group Max_score_value Max_score_element Max_score_case Min_evaluation
0 A 9.19 1 y 0.41
1 B 9.12 2 x 0.10
Here is possible solution with pd.merge
>> r = df.groupby('Group') \
>> .agg({'Score': 'idxmax', 'Evaluation': 'min'}) \
>> .rename(columns={'Score': 'idx'})
>> for c in ['Score', 'Element', 'Case']:
>> r = pd.merge(r, df[[c]], how='left', left_on='idx', right_index=True)
>> r.drop('Score_idx', axis=1).rename(columns={'Score': 'Max_score_value',
>> 'Element': 'Max_score_element',
>> 'Case': 'Max_score_case'})
Evaluation Max_score_value Max_score_element Max_score_case
Group
A 0.41 9.19 1 y
B 0.10 9.12 2 x
Though it provides the desired output, I am not sure about if it's not less efficient than yours approach.
Starting from the result
data frame, you can transform in two steps as follows to the format you need:
# collapse multi index column to single level column
result.columns = [y + '_' + x if y != '' else x for x, y in result.columns]
# split the idxmax column into two columns
result = result.assign(
max_score_element = result.idxmax_Score.str[0],
max_score_case = result.idxmax_Score.str[1]
).drop('idxmax_Score', 1)
result
#Group max_Score min_Evaluation max_score_case max_score_element
#0 A 9.19 0.41 y 1
#1 B 9.12 0.10 x 2
An alternative starting from original df
using join
, which may not be as efficient but less verbose similar to @tarashypka's idea:
(df.groupby('Group')
.agg({'Score': 'idxmax', 'Evaluation': 'min'})
.set_index('Score')
.join(df.drop('Evaluation',1))
.reset_index(drop=True))
#Evaluation Group Element Case Score
#0 0.41 A 1 y 9.19
#1 0.10 B 2 x 9.12
Naive timing with the example data set:
%%timeit
(df.groupby('Group')
.agg({'Score': 'idxmax', 'Evaluation': 'min'})
.set_index('Score')
.join(df.drop('Evaluation',1))
.reset_index(drop=True))
# 100 loops, best of 3: 3.47 ms per loop
%%timeit
result = (
df.set_index(['Element', 'Case'])
.groupby('Group')
.agg({'Score': ['max', 'idxmax'], 'Evaluation': 'min'})
.reset_index()
)
result.columns = [y + '_' + x if y != '' else x for x, y in result.columns]
result = result.assign(
max_score_element = result.idxmax_Score.str[0],
max_score_case = result.idxmax_Score.str[1]
).drop('idxmax_Score', 1)
# 100 loops, best of 3: 7.61 ms per loop
My Take
g = df.set_index('Group').groupby(level='Group', group_keys=False)
result = g.apply(
pd.DataFrame.nlargest, n=1, columns='Score'
)
def f(x):
x = 'value' if x == 'Score' else x
return 'Max_score_' + x.lower()
result.drop('Evaluation', 1).rename(columns=f).assign(
Min_evaluation=g.Evaluation.min().values).reset_index()
Group Max_score_element Max_score_case Max_score_value Min_evaluation
0 A 1 y 9.19 0.41
1 B 2 x 9.12 0.10