I have an intensity/greyscale image, and I have chosen a pixel inside this image. I want to send vectors starting from this pixel in all directions/angles, and I want to sum
It might not be the best way to solve it, but you can do it using a bit of algebra, heres how...
We know the Point-Slope formula of a line passing through point (a,b) with angle theta is:
y = tan(theta) * (x-a) + b
Therefore a simple idea is to compute the intersection of this line with y=const for all const, and read the intensity values at the intersection. You would repeat this for all angles...
A sample code to illustrate the concept:
%% input
point = [128 128]; % pixel location
I = imread('cameraman.tif'); % sample grayscale image
%% calculations
[r c] = size(I);
angles = linspace(0, 2*pi, 4) + rand;
angles(end) = [];
clr = lines( length(angles) ); % get some colors
figure(1), imshow(I), hold on
figure(2), hold on
for i=1:length(angles)
% line equation
f = @(x) tan(angles(i))*(x-point(1)) + point(2);
% get intensities along line
x = 1:c;
y = round(f(x));
idx = ( y<1 | y>r ); % indices of outside intersections
vals = diag(I(x(~idx), y(~idx)));
figure(1), plot(x, y, 'Color', clr(i,:)) % plot line
figure(2), plot(vals, 'Color', clr(i,:)) % plot profile
end
hold off
This example will be similar to Amro's, but it is a slightly different implementation that should work for an arbitrary coordinate system assigned to the image...
Let's assume that you have matrices of regularly-spaced x and y coordinates that are the same size as your image, such that the coordinates of pixel (i,j)
are given by (x(i,j),y(i,j))
. As an example, I'll create a sample 5-by-5 set of integer coordinates using MESHGRID:
>> [xGrid,yGrid] = meshgrid(1:5)
xGrid =
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
yGrid =
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
Next we can define a line y = m*(x - a) + b
passing through the coordinate system by selecting some values for the constants and computing y
using the x coordinates of the grid:
>> a = 0;
>> b = 1;
>> m = rand
m =
0.5469
>> y = m.*(xGrid(1,:)-a)+b
y =
1.5469 2.0938 2.6406 3.1875 3.7344
Finally, we find the y points in the grid that differ from the points computed above by less than the grid size:
>> index = abs(yGrid-repmat(y,size(yGrid,1),1)) <= yGrid(2,1)-yGrid(1,1)
index =
1 0 0 0 0
1 1 1 0 0
0 1 1 1 1
0 0 0 1 1
0 0 0 0 0
and use this index matrix to get the x and y coordinates for the pixels crossed by the line:
>> xCrossed = xGrid(index);
>> yCrossed = yGrid(index);