Given the following DataFrame
user_ID product_id amount
1 456 1
1 87 1
1 788 3
1 456
Suppose df
is:
user_ID product_id amount
0 1 456 1
1 1 87 1
2 1 788 3
3 1 456 5
4 1 87 2
5 2 456 1
6 2 788 3
7 2 456 5
Then you can use, groupby
and sum
as before, in addition you can sort values by two columns [user_ID, amount]
and ascending=[True,False]
refers ascending order of user and for each user descending order of amount:
new_df = df.groupby(['user_ID','product_id'], sort=True).sum().reset_index()
new_df = new_df.sort_values(by = ['user_ID', 'amount'], ascending=[True,False])
print(new_df)
Output:
user_ID product_id amount
1 1 456 6
0 1 87 3
2 1 788 3
3 2 456 6
4 2 788 3
You could also use aggregate()
:
# Make up some example data
df = data.frame (user_ID = as.factor(rep(1:5, each = 5)),
product_id = as.factor(sample(seq(1:10),size = 25, replace = TRUE)),
amount = sample(1:5, size = 25, replace = TRUE))
# Use aggregate with function sum to calculate the amount of products bought by product and customer
aggregate(amount ~ product_id * user_ID , data = df, FUN = sum)
Output:
product_id user_ID amount
1 2 1 3
2 4 1 2
3 6 1 1
4 9 1 5
5 1 2 5
6 3 2 9
7 8 2 1
8 10 2 5
9 2 3 5
10 3 3 5
11 4 3 5
12 5 3 3
13 8 3 5
14 3 4 3
15 4 4 9
16 5 4 2
17 10 4 1
18 2 5 1
19 4 5 4
20 5 5 2
21 10 5 2