Atomic operations in ARM strex and ldrex - can they work on I/O registers?

前端 未结 4 1172
半阙折子戏
半阙折子戏 2021-01-14 02:17

Suppose I\'m modifying a few bits in a memory-mapped I/O register, and it\'s possible that another process or and ISR could be modifying other bits in the same register.

相关标签:
4条回答
  • 2021-01-14 02:52

    If the chip in question has a toggle register (which is essentially XORed with the output latch when written to) there is a work around.

    • load port latch
    • mask off unrelated bits
    • xor with desired output
    • write to toggle register

    as long as two processes do not modify the same pins (as opposed to "the same port") there is no race condition.

    In the case of the bcm2708 you could choose an output pin whose neighbors are either unused or are never changed and write to GPFSELn in byte mode. This will however only ensure that you will not corrupt others. If others are writing in 32 bit mode and you interrupt them they will still corrupt you. So its kind of a hack.

    Hope this helps

    0 讨论(0)
  • 2021-01-14 02:59

    Thanks for mentioning me...

    You do not use ldrex/strex pairs on the resource itself. Like swp or test and set or whatever your instruction set supports (for arm it is swp and more recently strex/ldrex). You use these instructions on ram, some ram location agreed to by all the parties involved. The processes sharing the resource use the ram location to fight over control of the resource, whoever wins, gets to then actually address the resource. You would never use swp or ldrex/strex on a peripheral itself, that makes no sense. and I could see the memory system not giving you an exclusive okay response (EXOKAY) which is what you need to get out of the ldrex/strex infinite loop.

    You have two basic methods for sharing a resource (well maybe more, but here are two). One is you use this shared memory location and each user of the shared resource, fights to win control over the memory location. When you win you then talk to the resource directly. When finished give up control over the shared memory location.

    The other method is you have only one piece of software allowed to talk to the peripheral, nobody else is allowed to ever talk to the peripheral. Anyone wishing to have something done on the peripheral asks the one resource to do it for them. It is like everyone being able to share the soft drink fountain, vs the soft drink fountain is behind the counter and only the soft drink fountain employee is allowed to use the soft drink fountain. Then you need a scheme either have folks stand in line or have folks take a number and be called to have their drink filled. Along with the single resource talking to the peripheral you have to come up with a scheme, fifo for example, to essentially make the requests serial in nature.

    These are both on the honor system. You expect nobody else to talk to the peripheral who is not supposed to talk to the peripheral, or who has not won the right to talk to the peripheral. If you are looking for hardware solutions to prevent folks from talking to it, well, use the mmu but now you need to manage the who won the lock and how do they get the mmu unblocked (without using the honor system) and re-blocked in a way that

    Situations where you might have an interrupt handler and a foreground task sharing a resource, you have one or the other be the one that can touch the resource, and the other asks for requests. for example the resource might be interrupt driven (a serial port for example) and you have the interrupt handlers talk to the serial port hardware directly, if the application/forground task wants to have something done it fills out a request (puts something in a fifo/buffer) the interrupt then looks to see if there is anything in the request queue, and if so operates on it.

    Of course there is the, disable interrupts and re-enable critical sections, but those are scary if you want your interrupts to have some notion of timing/latency...Understand what you are doing and they can be used to solve this app+isr two user problem.

    ldrex/strex on non-cached memory space:

    My extest perhaps has more text on the when you can and cant use ldrex/strex, unfortunately the arm docs are not that good in this area. They tell you to stop using swp, which implies you should use strex/ldrex. But then switch to the hardware manual which says you dont have to support exclusive operations on a uniprocessor system. Which says two things, ldrex/strex are meant for multiprocessor systems and meant for sharing resources between processors on a multiprocessor system. Also this means that ldrex/strex is not necessarily supported on uniprocessor systems. Then it gets worse. ARM logic generally stops either at the edge of the processor core, the L1 cache is contained within this boundary it is not on the axi/amba bus. Or if you purchased/use the L2 cache then the ARM logic stops at the edge of that layer. Then you get into the chip vendor specific logic. That is the logic that you read the hardware manual for where it says you dont NEED to support exclusive accesses on uniprocessor systems. So the problem is vendor specific. And it gets worse, ARM's L1 and L2 cache so far as I have found do support ldrex/strex, so if you have the caches on then ldrex/strex will work on a system whose vendor code does not support them. If you dont have the cache on that is when you get into trouble on those systems (that is the extest thing I wrote).

    The processors that have ldrex/strex are new enough to have a big bank of config registers accessed through copressor reads. buried in there is a "swp instruction supported" bit to determine if you have a swap. didnt the cortex-m3 folks run into the situation of no swap and no ldrex/strex?

    The bug in the linux kernel (there are many others as well for other misunderstandings of arm hardware and documentation) is that on a processor that supports ldrex/strex the ldrex/strex solution is chosen without determining if it is multiprocessor, so you can (and I know of two instances) get into an infinite ldrex/strex loop. If you modify the linux code so that it uses the swp solution (there is code there for either solution) they linux will work. why only two people have talked about this on the internet that I know of, is because you have to turn off the caches to have it happen (so far as I know), and who would turn off both caches and try to run linux? It actually takes a fair amount of work to succesfully turn off the caches, modifications to linux are required to get it to work without crashing.

    No, I cant tell you the systems, and no I do not now nor ever have worked for ARM. This stuff is all in the arm documentation if you know where to look and how to interpret it.

    0 讨论(0)
  • 2021-01-14 03:03

    Like previous answers state, ldrex/strex are not intended for accessing the resource itself, but rather for implementing the synchronization primitives required to protect it.

    However, I feel the need to expand a bit on the architectural bits:

    1. ldrex/strex (pronounced load-exclusive/store-exclusive) are supported by all ARM architecture version 6 and later processors, minus the M0/M1 microcontrollers (ARMv6-M).
    2. It is not architecturally guaranteed that load-exclusive/store-exclusive will work on memory types other than "Normal" - so any clever usage of them on peripherals would not be portable.
    3. The SWP instruction isn't being recommended against simply because its very nature is counterproductive in a multi-core system - it was deprecated in ARMv6 and is "optional" to implement in certain ARMv7-A revisions, and most ARMv7-A processors already require it to be explicitly enabled in the cp15 SCTLR. Linux by default does not, and instead emulates the operation through the undef handler using ... load-exclusive and store-exclusive (what @dwelch refers to above). So please don't recommend SWP as a valid alternative if you are expecting code to be portable across ARMv7-A platforms.

    Synchronization with bus masters not in the inner-shareable domain (your cache-coherency island, as it were) requires additional external hardware - referred to as a global monitor - in order to track which masters have requested exclusive access to which regions.

    The "not required on uniprocessor systems" bit sounds like the ARM terminology getting in the way. A quad-core Cortex-A15 is considered one processor... So testing for "uniprocessor" in Linux would not make one iota of a difference - the architecture and the interconnect specifications remain the same regardless, and SWP is still optional and may not be present at all.

    Cortex-M3 supports ldrex/strex, but its interconnect (AHB-lite) does not support propagating it, so it cannot use it to synchronize with external masters. It does not support SWP, never introduced in the Thumb instruction set, which its interconnect would also not be able to propagate.

    0 讨论(0)
  • 2021-01-14 03:04

    Generally, the ldrex and strex need support from the memory systems. You may wish to refer to some answers by dwelch as well as his extext application. I would believe that you can not do this for memory mapped I/O. ldrex and strex are intended more for Lock Free algorithms, in normal memory.

    Generally only one driver should be in charge of a bank of I/O registers. Software will make requests to that driver via semaphores, etc which can be implement with ldrex and strex in normal SDRAM. So, you can inter-lock these I/O registers, but not in the direct sense.

    Often, the I/O registers will support atomic access through write one to clear, multiplexed access and other schemes.

    1. Write one to clear - typically use with hardware events. If code handles the event, then it writes only that bit. In this way, multiple routines can handle different bits in the same register.
    2. Multiplexed access - often an interrupt enable/disable will have a register bitmap. However, there are also alternate register that you can write the interrupt number to which enable or disable a particular register. For instance, intmask maybe two 32 bit registers. To enable int3, you could mask 1<<3 to the intmask or write only 3 to an intenable register. They intmask and intenable are hooked to the same bits via hardware.

    So, you can emulate an inter-lock with a driver or the hardware itself may support atomic operations through normal register writes. These schemes have served systems well for quiet some time before people even started to talk about lock free and wait free algorithms.

    0 讨论(0)
提交回复
热议问题