I read LSTM-autoencoder in this tutorial: https://blog.keras.io/building-autoencoders-in-keras.html, and paste the corresponding keras implementation below:
You can use shape=(None, input_dim)
But the RepeatVector
will need some hacking taking dimensions directly from the input tensor. (The code works with tensorflow, not sure about theano)
import keras.backend as K
def repeat(x):
stepMatrix = K.ones_like(x[0][:,:,:1]) #matrix with ones, shaped as (batch, steps, 1)
latentMatrix = K.expand_dims(x[1],axis=1) #latent vars, shaped as (batch, 1, latent_dim)
return K.batch_dot(stepMatrix,latentMatrix)
decoded = Lambda(repeat)([inputs,encoded])
decoded = LSTM(input_dim, return_sequences=True)(decoded)