pandas merge dataframes on closest timestamp

前端 未结 2 1110
日久生厌
日久生厌 2021-01-13 22:44

I want to merge two dataframes on three columns: email, subject and timestamp. The timestamps between the dataframes differ and I therefore need to identify the closest mat

相关标签:
2条回答
  • 2021-01-13 23:32

    Notice that if you merge df1 and df2 on email and subject, then the result has all the possible relevant timestamp pairings:

    In [108]: result = pd.merge(df1, df2, how='left', on=['email','subject'], suffixes=['', '_y']); result
    Out[108]: 
                 timestamp        email   subject         timestamp_y  clicks  var1
    0  2016-07-01 10:17:00  a@gmail.com  subject3 2016-07-01 10:17:39       1     7
    1  2016-07-01 10:17:00  a@gmail.com  subject3 2016-07-01 14:46:01       1     2
    2  2016-07-01 02:01:02  a@gmail.com   welcome 2016-07-01 02:01:14       1     1
    3  2016-07-01 14:45:04  a@gmail.com  subject3 2016-07-01 10:17:39       1     7
    4  2016-07-01 14:45:04  a@gmail.com  subject3 2016-07-01 14:46:01       1     2
    5  2016-07-01 08:14:02  a@gmail.com  subject2 2016-07-01 08:15:48       2     2
    6  2016-07-01 16:26:35  a@gmail.com  subject4 2016-07-01 16:27:28       1     2
    7  2016-07-01 10:17:00  b@gmail.com  subject3 2016-07-01 10:17:05       0     0
    8  2016-07-01 10:17:00  b@gmail.com  subject3 2016-07-01 14:45:05       0     0
    9  2016-07-01 02:01:02  b@gmail.com   welcome 2016-07-01 02:01:03       0     0
    10 2016-07-01 14:45:04  b@gmail.com  subject3 2016-07-01 10:17:05       0     0
    11 2016-07-01 14:45:04  b@gmail.com  subject3 2016-07-01 14:45:05       0     0
    12 2016-07-01 08:14:02  b@gmail.com  subject2 2016-07-01 08:16:00       0     0
    13 2016-07-01 16:26:35  b@gmail.com  subject4 2016-07-01 17:00:00       0     0
    

    You could now take the absolute value of the difference in timestamps for each row:

    result['diff'] = (result['timestamp_y'] - result['timestamp']).abs()
    

    and then use

    idx = result.groupby(['timestamp','email','subject'])['diff'].idxmin()
    result = result.loc[idx]
    

    to find the rows with the minimum difference for each group based on ['timestamp','email','subject'].


    import numpy as np
    import pandas as pd
    from pandas.io.parsers import StringIO
    
    a = """timestamp,email,subject
    2016-07-01 10:17:00,a@gmail.com,subject3
    2016-07-01 02:01:02,a@gmail.com,welcome
    2016-07-01 14:45:04,a@gmail.com,subject3
    2016-07-01 08:14:02,a@gmail.com,subject2
    2016-07-01 16:26:35,a@gmail.com,subject4
    2016-07-01 10:17:00,b@gmail.com,subject3
    2016-07-01 02:01:02,b@gmail.com,welcome
    2016-07-01 14:45:04,b@gmail.com,subject3
    2016-07-01 08:14:02,b@gmail.com,subject2
    2016-07-01 16:26:35,b@gmail.com,subject4
    """
    
    b = """timestamp,email,subject,clicks,var1
    2016-07-01 02:01:14,a@gmail.com,welcome,1,1
    2016-07-01 08:15:48,a@gmail.com,subject2,2,2
    2016-07-01 10:17:39,a@gmail.com,subject3,1,7
    2016-07-01 14:46:01,a@gmail.com,subject3,1,2
    2016-07-01 16:27:28,a@gmail.com,subject4,1,2
    2016-07-01 10:17:05,b@gmail.com,subject3,0,0
    2016-07-01 02:01:03,b@gmail.com,welcome,0,0
    2016-07-01 14:45:05,b@gmail.com,subject3,0,0
    2016-07-01 08:16:00,b@gmail.com,subject2,0,0
    2016-07-01 17:00:00,b@gmail.com,subject4,0,0
    """
    
    df1 = pd.read_csv(StringIO(a), parse_dates=['timestamp'])
    df2 = pd.read_csv(StringIO(b), parse_dates=['timestamp'])
    
    result = pd.merge(df1, df2, how='left', on=['email','subject'], suffixes=['', '_y'])
    result['diff'] = (result['timestamp_y'] - result['timestamp']).abs()
    idx = result.groupby(['timestamp','email','subject'])['diff'].idxmin()
    result = result.loc[idx].drop(['timestamp_y','diff'], axis=1)
    result = result.sort_index()
    print(result)
    

    yields

                 timestamp        email   subject  clicks  var1
    0  2016-07-01 10:17:00  a@gmail.com  subject3       1     7
    2  2016-07-01 02:01:02  a@gmail.com   welcome       1     1
    4  2016-07-01 14:45:04  a@gmail.com  subject3       1     2
    5  2016-07-01 08:14:02  a@gmail.com  subject2       2     2
    6  2016-07-01 16:26:35  a@gmail.com  subject4       1     2
    7  2016-07-01 10:17:00  b@gmail.com  subject3       0     0
    9  2016-07-01 02:01:02  b@gmail.com   welcome       0     0
    11 2016-07-01 14:45:04  b@gmail.com  subject3       0     0
    12 2016-07-01 08:14:02  b@gmail.com  subject2       0     0
    13 2016-07-01 16:26:35  b@gmail.com  subject4       0     0
    
    0 讨论(0)
  • 2021-01-13 23:34

    You want to apply the closest timestamp logic to each group of 'email' and 'subject'

    a = """timestamp,email,subject
    2016-07-01 10:17:00,a@gmail.com,subject3
    2016-07-01 02:01:02,a@gmail.com,welcome
    2016-07-01 14:45:04,a@gmail.com,subject3
    2016-07-01 08:14:02,a@gmail.com,subject2
    2016-07-01 16:26:35,a@gmail.com,subject4
    2016-07-01 10:17:00,b@gmail.com,subject3
    2016-07-01 02:01:02,b@gmail.com,welcome
    2016-07-01 14:45:04,b@gmail.com,subject3
    2016-07-01 08:14:02,b@gmail.com,subject2
    2016-07-01 16:26:35,b@gmail.com,subject4
    """
    
    b = """timestamp,email,subject,clicks,var1
    2016-07-01 02:01:14,a@gmail.com,welcome,1,1
    2016-07-01 08:15:48,a@gmail.com,subject2,2,2
    2016-07-01 10:17:39,a@gmail.com,subject3,1,7
    2016-07-01 14:46:01,a@gmail.com,subject3,1,2
    2016-07-01 16:27:28,a@gmail.com,subject4,1,2
    2016-07-01 10:17:05,b@gmail.com,subject3,0,0
    2016-07-01 02:01:03,b@gmail.com,welcome,0,0
    2016-07-01 14:45:05,b@gmail.com,subject3,0,0
    2016-07-01 08:16:00,b@gmail.com,subject2,0,0
    2016-07-01 17:00:00,b@gmail.com,subject4,0,0
    """
    
    df1 = pd.read_csv(StringIO(a), parse_dates=['timestamp'])
    df2 = pd.read_csv(StringIO(b), parse_dates=['timestamp'])
    df2 = df2.set_index(['email', 'subject'])
    
    def find_closest_date(timepoint, time_series, add_time_delta_column=True):
        # takes a pd.Timestamp() instance and a pd.Series with dates in it
        # calcs the delta between `timepoint` and each date in `time_series`
        # returns the closest date and optionally the number of days in its time delta
        time_series = time_series.values
        timepoint = np.datetime64(timepoint)
        deltas = np.abs(np.subtract(time_series, timepoint))
        idx_closest_date = np.argmin(deltas)
        res = {"closest_date": time_series[idx_closest_date]}
        idx = ['closest_date']
        if add_time_delta_column:
            res["closest_delta"] = deltas[idx_closest_date]
            idx.append('closest_delta')
        return pd.Series(res, index=idx)
    
    # Then group df1 as needed
    grouped = df1.groupby(['email', 'subject'])
    
    # Finally loop over the group items, finding the closest timestamps
    join_ts = pd.DataFrame()
    for name, group in grouped:
        try:
            join_ts = pd.concat([join_ts, group['timestamp']\
                                 .apply(find_closest_date, time_series=df2.loc[name, 'timestamp'])],
                                axis=0)
        except KeyError:
            pass
    
    df3 = pd.merge(pd.concat([df1, join_ts], axis=1), df2, left_on=['closest_date'], right_on=['timestamp'])
    
    0 讨论(0)
提交回复
热议问题