I am trying to convert my model in Tensorflow (.pb) format to Keras (.h5) format to view post hoc attention visualisation. I have tried below code.
file_pb
In the Latest Tensorflow Version (2.2)
, when we Save
the Model using tf.keras.models.save_model
, the Model will be Saved
in not just a pb file
but it will be Saved in a Folder, which comprises Variables
Folder and Assets
Folder, in addition to the saved_model.pb
file, as shown in the screenshot below:
For example, if the Model
is Saved
with the Name, "Model"
, we have to Load
using the Name of the Folder, "Model", instead of saved_model.pb
, as shown below:
loaded_model = tf.keras.models.load_model('Model')
instead of
loaded_model = tf.keras.models.load_model('saved_model.pb')
One more change you can do is to replace
tf.keras.models.save_keras_model
with
tf.keras.models.save_model
Complete working Code to convert a Model from Tensorflow Saved Model Format (pb)
to Keras Saved Model Format (h5)
is shown below:
import os
import tensorflow as tf
from tensorflow.keras.preprocessing import image
New_Model = tf.keras.models.load_model('Dogs_Vs_Cats_Model') # Loading the Tensorflow Saved Model (PB)
print(New_Model.summary())
Output of the New_Model.summary
command is:
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 148, 148, 32) 896
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 74, 74, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 72, 72, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 34, 34, 128) 73856
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 15, 15, 128) 147584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128) 0
_________________________________________________________________
flatten (Flatten) (None, 6272) 0
_________________________________________________________________
dense (Dense) (None, 512) 3211776
_________________________________________________________________
dense_1 (Dense) (None, 1) 513
=================================================================
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0
_________________________________________________________________
None
Continuing the code:
# Saving the Model in H5 Format and Loading it (to check if it is same as PB Format)
tf.keras.models.save_model(New_Model, 'New_Model.h5') # Saving the Model in H5 Format
loaded_model_from_h5 = tf.keras.models.load_model('New_Model.h5') # Loading the H5 Saved Model
print(loaded_model_from_h5.summary())
Output of the command, print(loaded_model_from_h5.summary())
is shown below:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 148, 148, 32) 896
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 74, 74, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 72, 72, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 34, 34, 128) 73856
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 15, 15, 128) 147584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128) 0
_________________________________________________________________
flatten (Flatten) (None, 6272) 0
_________________________________________________________________
dense (Dense) (None, 512) 3211776
_________________________________________________________________
dense_1 (Dense) (None, 1) 513
=================================================================
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0
_________________________________________________________________
As can be seen from the Summary
of both the Models
above, both the Models
are same.
Please let me know if you need any other information and I will be Happy to help you.
Hope this helps. Happy Learning.