Tensorflow (.pb) format to Keras (.h5)

后端 未结 1 872
隐瞒了意图╮
隐瞒了意图╮ 2021-01-13 20:22

I am trying to convert my model in Tensorflow (.pb) format to Keras (.h5) format to view post hoc attention visualisation. I have tried below code.

file_pb          


        
相关标签:
1条回答
  • 2021-01-13 21:11

    In the Latest Tensorflow Version (2.2), when we Save the Model using tf.keras.models.save_model, the Model will be Saved in not just a pb file but it will be Saved in a Folder, which comprises Variables Folder and Assets Folder, in addition to the saved_model.pb file, as shown in the screenshot below:

    For example, if the Model is Saved with the Name, "Model", we have to Load using the Name of the Folder, "Model", instead of saved_model.pb, as shown below:

    loaded_model = tf.keras.models.load_model('Model')
    

    instead of

    loaded_model = tf.keras.models.load_model('saved_model.pb')
    

    One more change you can do is to replace

    tf.keras.models.save_keras_model
    

    with

    tf.keras.models.save_model
    

    Complete working Code to convert a Model from Tensorflow Saved Model Format (pb) to Keras Saved Model Format (h5) is shown below:

    import os
    import tensorflow as tf
    from tensorflow.keras.preprocessing import image
    
    New_Model = tf.keras.models.load_model('Dogs_Vs_Cats_Model') # Loading the Tensorflow Saved Model (PB)
    print(New_Model.summary())
    

    Output of the New_Model.summary command is:

    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d (Conv2D)              (None, 148, 148, 32)      896       
    _________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 74, 74, 32)        0         
    _________________________________________________________________
    conv2d_1 (Conv2D)            (None, 72, 72, 64)        18496     
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64)        0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 34, 34, 128)       73856     
    _________________________________________________________________
    max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128)       0         
    _________________________________________________________________
    conv2d_3 (Conv2D)            (None, 15, 15, 128)       147584    
    _________________________________________________________________
    max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128)         0         
    _________________________________________________________________
    flatten (Flatten)            (None, 6272)              0         
    _________________________________________________________________
    dense (Dense)                (None, 512)               3211776   
    _________________________________________________________________
    dense_1 (Dense)              (None, 1)                 513       
    =================================================================
    Total params: 3,453,121
    Trainable params: 3,453,121
    Non-trainable params: 0
    _________________________________________________________________
    None
    

    Continuing the code:

    # Saving the Model in H5 Format and Loading it (to check if it is same as PB Format)
    tf.keras.models.save_model(New_Model, 'New_Model.h5') # Saving the Model in H5 Format
    
    loaded_model_from_h5 = tf.keras.models.load_model('New_Model.h5') # Loading the H5 Saved Model
    print(loaded_model_from_h5.summary())
    

    Output of the command, print(loaded_model_from_h5.summary()) is shown below:

    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d (Conv2D)              (None, 148, 148, 32)      896       
    _________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 74, 74, 32)        0         
    _________________________________________________________________
    conv2d_1 (Conv2D)            (None, 72, 72, 64)        18496     
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64)        0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 34, 34, 128)       73856     
    _________________________________________________________________
    max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128)       0         
    _________________________________________________________________
    conv2d_3 (Conv2D)            (None, 15, 15, 128)       147584    
    _________________________________________________________________
    max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128)         0         
    _________________________________________________________________
    flatten (Flatten)            (None, 6272)              0         
    _________________________________________________________________
    dense (Dense)                (None, 512)               3211776   
    _________________________________________________________________
    dense_1 (Dense)              (None, 1)                 513       
    =================================================================
    Total params: 3,453,121
    Trainable params: 3,453,121
    Non-trainable params: 0
    _________________________________________________________________
    

    ​ As can be seen from the Summary of both the Models above, both the Models are same.

    Please let me know if you need any other information and I will be Happy to help you.

    Hope this helps. Happy Learning.

    0 讨论(0)
提交回复
热议问题