How to handle big integers in C

后端 未结 5 1463
无人及你
无人及你 2021-01-13 13:26

I want to implement cryptography algorithms. So I need a suitable data type to handle integers with a lot of digits.

Many recent languages, such as Java, Python and

相关标签:
5条回答
  • 2021-01-13 13:33

    It will be easier to deal with an array of characters. Its a good idea to devise your own class (/datatype), defining functions to deal with the all arithmetic operations for future use. You could use this one designed by ACRush for reference.

    0 讨论(0)
  • 2021-01-13 13:34

    The (to me) obvious choice would be GMP whose main developer, Torbjörn Granlund, was a member of the Swedish five man team that won the Simon Singh "Cipher Challenge" in 2000.

    According to the website the code can be used to calculate 1000000000 digits of pi in 1957 seconds on an AMD Phenom II @ 3.2 GHz.

    The code has been developed since 1991.

    0 讨论(0)
  • 2021-01-13 13:40

    I would first off highly suggest using an already existing library.

    However, I have done this before in the past as an experiment. I choose option 2. Representing a value like "10000000002000000000" as

    int array[2] = { 1000000000, 2000000000 } 
    

    and performing operations and carry values one int at a time. Not very efficient, but functionally sound.

    0 讨论(0)
  • 2021-01-13 13:44

    the variable in main function can Store even 100 factorial in c++

    #include <iostream>
    #include <cstdio>
    #include <vector>
    #include <cstring>
    #include <string>
    #include <map>
    #include <functional>
    #include <algorithm>
    #include <cstdlib>
    #include <iomanip>
    #include <stack>
    #include <queue>
    #include <deque>
    #include <limits>
    #include <cmath>
    #include <numeric>
    #include <set>
    
    using namespace std;
    
    
    //template for BIGINIT
    
    // base and base_digits must be consistent
    const int base = 10;
    const int base_digits = 1;
    
    struct bigint {
        vector<int> a;
        int sign;
    
        bigint() :
            sign(1) {
        }
    
        bigint(long long v) {
            *this = v;
        }
    
        bigint(const string &s) {
            read(s);
        }
    
        void operator=(const bigint &v) {
            sign = v.sign;
            a = v.a;
        }
    
        void operator=(long long v) {
            sign = 1;
            if (v < 0)
                sign = -1, v = -v;
            for (; v > 0; v = v / base)
                a.push_back(v % base);
        }
    
        bigint operator+(const bigint &v) const {
            if (sign == v.sign) {
                bigint res = v;
    
                for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i) {
                    if (i == (int) res.a.size())
                        res.a.push_back(0);
                    res.a[i] += carry + (i < (int) a.size() ? a[i] : 0);
                    carry = res.a[i] >= base;
                    if (carry)
                        res.a[i] -= base;
                }
                return res;
            }
            return *this - (-v);
        }
    
        bigint operator-(const bigint &v) const {
            if (sign == v.sign) {
                if (abs() >= v.abs()) {
                    bigint res = *this;
                    for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) {
                        res.a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
                        carry = res.a[i] < 0;
                        if (carry)
                            res.a[i] += base;
                    }
                    res.trim();
                    return res;
                }
                return -(v - *this);
            }
            return *this + (-v);
        }
    
        void operator*=(int v) {
            if (v < 0)
                sign = -sign, v = -v;
            for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i) {
                if (i == (int) a.size())
                    a.push_back(0);
                long long cur = a[i] * (long long) v + carry;
                carry = (int) (cur / base);
                a[i] = (int) (cur % base);
                //asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
            }
            trim();
        }
    
        bigint operator*(int v) const {
            bigint res = *this;
            res *= v;
            return res;
        }
    
        friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
            int norm = base / (b1.a.back() + 1);
            bigint a = a1.abs() * norm;
            bigint b = b1.abs() * norm;
            bigint q, r;
            q.a.resize(a.a.size());
    
            for (int i = a.a.size() - 1; i >= 0; i--) {
                r *= base;
                r += a.a[i];
                int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
                int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
                int d = ((long long) base * s1 + s2) / b.a.back();
                r -= b * d;
                while (r < 0)
                    r += b, --d;
                q.a[i] = d;
            }
    
            q.sign = a1.sign * b1.sign;
            r.sign = a1.sign;
            q.trim();
            r.trim();
            return make_pair(q, r / norm);
        }
    
        bigint operator/(const bigint &v) const {
            return divmod(*this, v).first;
        }
    
        bigint operator%(const bigint &v) const {
            return divmod(*this, v).second;
        }
    
        void operator/=(int v) {
            if (v < 0)
                sign = -sign, v = -v;
            for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i) {
                long long cur = a[i] + rem * (long long) base;
                a[i] = (int) (cur / v);
                rem = (int) (cur % v);
            }
            trim();
        }
    
        bigint operator/(int v) const {
            bigint res = *this;
            res /= v;
            return res;
        }
    
        int operator%(int v) const {
            if (v < 0)
                v = -v;
            int m = 0;
            for (int i = a.size() - 1; i >= 0; --i)
                m = (a[i] + m * (long long) base) % v;
            return m * sign;
        }
    
        void operator+=(const bigint &v) {
            *this = *this + v;
        }
        void operator-=(const bigint &v) {
            *this = *this - v;
        }
        void operator*=(const bigint &v) {
            *this = *this * v;
        }
        void operator/=(const bigint &v) {
            *this = *this / v;
        }
    
        bool operator<(const bigint &v) const {
            if (sign != v.sign)
                return sign < v.sign;
            if (a.size() != v.a.size())
                return a.size() * sign < v.a.size() * v.sign;
            for (int i = a.size() - 1; i >= 0; i--)
                if (a[i] != v.a[i])
                    return a[i] * sign < v.a[i] * sign;
            return false;
        }
    
        bool operator>(const bigint &v) const {
            return v < *this;
        }
        bool operator<=(const bigint &v) const {
            return !(v < *this);
        }
        bool operator>=(const bigint &v) const {
            return !(*this < v);
        }
        bool operator==(const bigint &v) const {
            return !(*this < v) && !(v < *this);
        }
        bool operator!=(const bigint &v) const {
            return *this < v || v < *this;
        }
    
        void trim() {
            while (!a.empty() && !a.back())
                a.pop_back();
            if (a.empty())
                sign = 1;
        }
    
        bool isZero() const {
            return a.empty() || (a.size() == 1 && !a[0]);
        }
    
        bigint operator-() const {
            bigint res = *this;
            res.sign = -sign;
            return res;
        }
    
        bigint abs() const {
            bigint res = *this;
            res.sign *= res.sign;
            return res;
        }
    
        long long longValue() const {
            long long res = 0;
            for (int i = a.size() - 1; i >= 0; i--)
                res = res * base + a[i];
            return res * sign;
        }
    
        friend bigint gcd(const bigint &a, const bigint &b) {
            return b.isZero() ? a : gcd(b, a % b);
        }
        friend bigint lcm(const bigint &a, const bigint &b) {
            return a / gcd(a, b) * b;
        }
    
        void read(const string &s) {
            sign = 1;
            a.clear();
            int pos = 0;
            while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
                if (s[pos] == '-')
                    sign = -sign;
                ++pos;
            }
            for (int i = s.size() - 1; i >= pos; i -= base_digits) {
                int x = 0;
                for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                    x = x * 10 + s[j] - '0';
                a.push_back(x);
            }
            trim();
        }
    
        friend istream& operator>>(istream &stream, bigint &v) {
            string s;
            stream >> s;
            v.read(s);
            return stream;
        }
    
        friend ostream& operator<<(ostream &stream, const bigint &v) {
            if (v.sign == -1)
                stream << '-';
            stream << (v.a.empty() ? 0 : v.a.back());
            for (int i = (int) v.a.size() - 2; i >= 0; --i)
                stream << setw(base_digits) << setfill('0') << v.a[i];
            return stream;
        }
    
        static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
            vector<long long> p(max(old_digits, new_digits) + 1);
            p[0] = 1;
            for (int i = 1; i < (int) p.size(); i++)
                p[i] = p[i - 1] * 10;
            vector<int> res;
            long long cur = 0;
            int cur_digits = 0;
            for (int i = 0; i < (int) a.size(); i++) {
                cur += a[i] * p[cur_digits];
                cur_digits += old_digits;
                while (cur_digits >= new_digits) {
                    res.push_back(int(cur % p[new_digits]));
                    cur /= p[new_digits];
                    cur_digits -= new_digits;
                }
            }
            res.push_back((int) cur);
            while (!res.empty() && !res.back())
                res.pop_back();
            return res;
        }
    
        typedef vector<long long> vll;
    
        static vll karatsubaMultiply(const vll &a, const vll &b) {
            int n = a.size();
            vll res(n + n);
            if (n <= 32) {
                for (int i = 0; i < n; i++)
                    for (int j = 0; j < n; j++)
                        res[i + j] += a[i] * b[j];
                return res;
            }
    
            int k = n >> 1;
            vll a1(a.begin(), a.begin() + k);
            vll a2(a.begin() + k, a.end());
            vll b1(b.begin(), b.begin() + k);
            vll b2(b.begin() + k, b.end());
    
            vll a1b1 = karatsubaMultiply(a1, b1);
            vll a2b2 = karatsubaMultiply(a2, b2);
    
            for (int i = 0; i < k; i++)
                a2[i] += a1[i];
            for (int i = 0; i < k; i++)
                b2[i] += b1[i];
    
            vll r = karatsubaMultiply(a2, b2);
            for (int i = 0; i < (int) a1b1.size(); i++)
                r[i] -= a1b1[i];
            for (int i = 0; i < (int) a2b2.size(); i++)
                r[i] -= a2b2[i];
    
            for (int i = 0; i < (int) r.size(); i++)
                res[i + k] += r[i];
            for (int i = 0; i < (int) a1b1.size(); i++)
                res[i] += a1b1[i];
            for (int i = 0; i < (int) a2b2.size(); i++)
                res[i + n] += a2b2[i];
            return res;
        }
    
        bigint operator*(const bigint &v) const {
            vector<int> a6 = convert_base(this->a, base_digits, 6);
            vector<int> b6 = convert_base(v.a, base_digits, 6);
            vll a(a6.begin(), a6.end());
            vll b(b6.begin(), b6.end());
            while (a.size() < b.size())
                a.push_back(0);
            while (b.size() < a.size())
                b.push_back(0);
            while (a.size() & (a.size() - 1))
                a.push_back(0), b.push_back(0);
            vll c = karatsubaMultiply(a, b);
            bigint res;
            res.sign = sign * v.sign;
            for (int i = 0, carry = 0; i < (int) c.size(); i++) {
                long long cur = c[i] + carry;
                res.a.push_back((int) (cur % 1000000));
                carry = (int) (cur / 1000000);
            }
            res.a = convert_base(res.a, 6, base_digits);
            res.trim();
            return res;
        }
    };
     //use :  bigint var;
    //template for biginit over
    
    
    
    
    
    int main()
    {  
       bigint var=10909000890789;
       cout<<var;
    return 0;
    }
    
    0 讨论(0)
  • 2021-01-13 13:45

    If you are interested in Cryptography, then everything has to be correct. Either you spend many months writing and testing and testing and testing... your own big number arithmetic functions, or you use an existing library.

    It is difficult enough getting crypto to work correctly when you know that the methods you are using are correct. It is almost impossible if the methods you are using have subtle errors.

    For crypto use GMP, and concentrate on the crypto.

    If you want to write your own large number arithmetic package, then by all means do so. I have done the same myself and it is an interesting and useful experience. But don't use your own work for anything critical.

    0 讨论(0)
提交回复
热议问题