The following code raises \"Detected cartesian product for INNER join\" exception:
first_df = spark.createDataFrame([{
The problem is, that once you persist your data, second_id
is incorporated into the cached table and no longer considered constant. As a result planner can no longer infer that the query should be expressed a Cartesian product, and uses standard SortMergeJoin
on hash partitioned second_id
.
It would be trivial to achieve the same outcome, without persistence, using udf
from pyspark.sql.functions import lit, pandas_udf, PandasUDFType
@pandas_udf('integer', PandasUDFType.SCALAR)
def identity(x):
return x
second_df = second_df.withColumn('second_id', identity(lit(1)))
result_df = first_df.join(second_df,
first_df.first_id == second_df.second_id,
'inner')
result_df.explain()
== Physical Plan ==
*(6) SortMergeJoin [cast(first_id#4 as int)], [second_id#129], Inner
:- *(2) Sort [cast(first_id#4 as int) ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(cast(first_id#4 as int), 200)
: +- *(1) Filter isnotnull(first_id#4)
: +- Scan ExistingRDD[first_id#4]
+- *(5) Sort [second_id#129 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(second_id#129, 200)
+- *(4) Project [some_value#6, pythonUDF0#154 AS second_id#129]
+- ArrowEvalPython [identity(1)], [some_value#6, pythonUDF0#154]
+- *(3) Project [some_value#6]
+- *(3) Filter isnotnull(pythonUDF0#153)
+- ArrowEvalPython [identity(1)], [some_value#6, pythonUDF0#153]
+- Scan ExistingRDD[some_value#6]
However SortMergeJoin
is not what you should try to achieve here. With constant key, it would result in an extreme data skew, and likely fail, on anything but toy data.
Cartesian Product however, as expensive as it is, won't suffer from this issue, and should be preferred here. So it would recommend enabling cross joins or using explicit cross join syntax (spark.sql.crossJoin.enabled for Spark 2.x) and move on.
A pending question remains how to prevent undesired behavior when data is cached. Unfortunately I don't have an answer ready for that. I fairly sure it is possible to use custom optimizer rules, but this is not something that can be done with Python alone.