Store aggregate value of a PySpark dataframe column into a variable

前端 未结 6 841
故里飘歌
故里飘歌 2021-01-13 09:37

I am working with PySpark dataframes here. \"test1\" is my PySpark dataframe and event_date is a TimestampType. So when I try to get a distinct count of event_date, the resu

相关标签:
6条回答
  • 2021-01-13 09:58
    trainDF.fillna({'Age':trainDF.select('Age').agg(avg('Age')).collect()[0][0]})
    
    0 讨论(0)
  • 2021-01-13 09:59

    Using collect()

    import pyspark.sql.functions as sf
    
    
    distinct_count = df.agg(sf.countDistinct('column_name')).collect()[0][0]
    

    Using first()

    import pyspark.sql.functions as sf
    
    
    distinct_count = df.agg(sf.countDistinct('column_name')).first()[0]
    
    0 讨论(0)
  • 2021-01-13 10:09

    I'm pretty sure df.select([max('event_date')]) returns a DataFrame because there could be more than one row that has the max value in that column. In your particular use case no two rows may have the same value in that column, but it is easy to imagine a case where more than one row can have the same max event_date.

    df.select('event_date').distinct().count() returns an integer because it is telling you how many distinct values there are in that particular column. It does NOT tell you which value is the largest.

    If you want code to get the max event_date and store it as a variable, try the following max_date = df.select([max('event_date')]).distinct().collect()

    0 讨论(0)
  • 2021-01-13 10:11

    You cannot directly access the values in a dataframe. Dataframe returns a Row Object. Instead Dataframe gives you a option to convert it into a python dictionary. Go through the following example where I will calculate average wordcount:

    wordsDF = sqlContext.createDataFrame([('cat',), ('elephant',), ('rat',), ('rat',), ('cat', )], ['word'])
    wordCountsDF = wordsDF.groupBy(wordsDF['word']).count()
    wordCountsDF.show()
    

    Here are the word count results:

    +--------+-----+
    |    word|count|
    +--------+-----+
    |     cat|    2|
    |     rat|    2|
    |elephant|    1|
    +--------+-----+
    

    Now I calculate the average of count column apply collect() operation on it. Remember collect() returns a list.Here the list contains one element only.

    averageCount = wordCountsDF.groupBy().avg('count').collect()
    

    Result looks something like this.

    [Row(avg(count)=1.6666666666666667)]
    

    You cannot access directly the average value using some python variable. You have to convert it into a dictionary to access it.

    results={}
    for i in averageCount:
      results.update(i.asDict())
    print results
    

    Our final results look like these:

    {'avg(count)': 1.6666666666666667}
    

    Finally you can access average value using:

    print results['avg(count)']
    
    1.66666666667
    
    0 讨论(0)
  • 2021-01-13 10:20

    try this

    loop_cnt=test1.select('event_date').distinct().count()
    var = loop_cnt.collect()[0]
    

    Hope this helps

    0 讨论(0)
  • 2021-01-13 10:22
    last_processed_dt=df.select([max('event_date')])
    

    to get the max of date, we should try something like

    last_processed_dt=df.select([max('event_date').alias("max_date")]).collect()[0]
    last_processed_dt["max_date"]
    

    Based on sujit's example.We can actually print the value without iterating/looping by [Row(avg(count)=1.6666666666666667)] by providing averageCount[0][0].

    Note: we are not going through the loop, because it's going to return only one value.

    0 讨论(0)
提交回复
热议问题