Convert a Pandas DataFrame into a single row DataFrame

前端 未结 4 1975
情深已故
情深已故 2021-01-13 08:52

I\'ve seen similar questions but mine is more direct and abstract.

I have a dataframe with \"n\" rows, being \"n\" a small number.We can assume the index is just the

相关标签:
4条回答
  • 2021-01-13 09:14

    Another way using list comprehension -

    ndf = pd.DataFrame(df.values.reshape(1, -1)[0]).T
    ndf.columns = [j + '_' + str(i) for i in range(1, 4) for j in df.columns]
    
    0 讨论(0)
  • 2021-01-13 09:16

    Unstack and map i.e

    ndf = df.unstack().to_frame().T
    
    ndf.columns = ndf.columns.map('{0[0]}_{0[1]}'.format) 
    
        A_0  A_1  A_2  B_0  B_1  B_2  C_0  C_1  C_2  D_0  D_1  D_2  E_0  E_1  E_2
    0    1    6   11    2    7   12    3    8   13    4    9   14    5   10    5
    

    In case you want the sorted columns then you can do

    ndf = df.unstack().to_frame().T.sort_index(1,1)
    
    0 讨论(0)
  • 2021-01-13 09:24

    Let's try this, using stack, to_frame, and T:

    df.index = df.index + 1
    df_out = df.stack()
    df_out.index = df_out.index.map('{0[1]}_{0[0]}'.format)
    df_out.to_frame().T
    

    Output:

       A_1  B_1  C_1  D_1  E_1  A_2  B_2  C_2  D_2  E_2  A_3  B_3  C_3  D_3  E_3
    0    1    2    3    4    5    6    7    8    9   10   11   12   13   14    5
    
    0 讨论(0)
  • 2021-01-13 09:31

    We need stack and swaplevel

    df1=df.stack().swaplevel()
    df1.index=df1.index.map('{0[0]}_{0[1]}'.format) 
    df1.to_frame().T
    Out[527]: 
       A_0  B_0  C_0  D_0  E_0  A_1  B_1  C_1  D_1  E_1  A_2  B_2  C_2  D_2  E_2
    0    1    2    3    4    5    6    7    8    9   10   11   12   13   14    5
    

    Or you can using numpy

    pd.DataFrame(data=np.concatenate(df.values),index=[m+'_'+str(n) for m,n in zip(df.columns.tolist()*3,np.repeat([1,2,3],df.shape[1]))]).T
    Out[551]: 
       A_1  B_1  C_1  D_1  E_1  A_2  B_2  C_2  D_2  E_2  A_3  B_3  C_3  D_3  E_3
    0    1    2    3    4    5    6    7    8    9   10   11   12   13   14    5
    
    0 讨论(0)
提交回复
热议问题