is there some good and better way to find centroid of contour in opencv, without using built in functions? <
While Sonaten's answer is perfectly correct, there is a simple way to do it: Use the dedicated opencv function for that: moments()
http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=moments#moments
It does not only returns the centroid, but some more statistics about your shape. And you can send it a contour or a raster shape (binary image), whatever best fits your need.
EDIT
example (modified) from "Learning OpenCV", by gary bradsky
CvMoments moments;
double M00, M01, M10;
cvMoments(contour,&moments);
M00 = cvGetSpatialMoment(&moments,0,0);
M10 = cvGetSpatialMoment(&moments,1,0);
M01 = cvGetSpatialMoment(&moments,0,1);
centers[i].x = (int)(M10/M00);
centers[i].y = (int)(M01/M00);
I've used Joseph O'Rourke excellent polygon centroid algorithm to great success.
See http://maven.smith.edu/~orourke/Code/centroid.c
Essentially:
Finally after performing this with all points in the contour, find the contours centroid x and y using the 2 triangle x and y lists in 5 which is a weighted sum of signed triangle areas, weighted by the centroid of each triangle:
for (Int32 Index = 0; Index < CTxs.Count; Index++)
{
CentroidPointRet.X += CTxs[Index] * (TriAreas[Index] / SumT);
}
// now find centroid Y value
for (Int32 Index = 0; Index < CTys.Count; Index++)
{
CentroidPointRet.Y += CTys[Index] * (TriAreas[Index] / SumT);
}
What you get in your current piece of code is of course the centroid of your bounding box.
"If you have a bunch of points(2d vectors), you should be able to get the centroid by averaging those points: create a point to add all the other points' positions into and then divide the components of that point with accumulated positions by the total number of points." - George Profenza mentions
This is indeed the right approach for the exact centroid of any given object in two-dimentionalspace.
On wikipedia we have some general forms for finding the centroid of an object. http://en.wikipedia.org/wiki/Centroid
Personally, I would ask myself what I needed from this program. Do I want a thorough but performance heavy operation, or do I want to make some approximations? I might even be able to find an OpenCV function that deals with this correct and efficiently.
Don't have a working example, so I'm writing this in pseudocode on a simple 5 pixel example on a thorough method.
x_centroid = (pixel1_x + pixel2_x + pixel3_x + pixel4_x +pixel5_x)/5
y_centroid = (pixel1_y + pixel2_y + pixel3_y + pixel4_y +pixel5_y)/5
centroidPoint(x_centroid, y_centroid)
Looped for x pixels
Loop j times *sample (for (int i=0, i < j, i++))*
{
x_centroid = pixel[j]_x + x_centroid
y_centroid = pixel[j]_x + x_centroid
}
x_centroid = x_centroid/j
y_centroid = y_centroid/j
centroidPoint(x_centroid, y_centroid)
Essentially, you have the vector contours of the type
vector<vector<point>>
in OpenCV 2.3. I believe you have something similar in earlier versions, and you should be able to go through each blob on your picture with the first index of this "double vector", and go through each pixel in the inner vector.
Here is a link to documentation on the contour function http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=contours#cv.DrawContours
note: you've tagged your question as c++ visual. I'd suggest that you use the c++ syntax in OpenCV 2.3 instead of c. The first and good reason to use 2.3 is that it is more class based, which in this case means that the class Mat (instead of IplImage) does leak memory. One does not have to write destroy commands all the live long day :)
I hope this shed some light on your problem. Enjoy.