generating batch of clones from image numpy

前端 未结 3 460
旧巷少年郎
旧巷少年郎 2021-01-13 08:05

I have a numpy array (an image) called a with this size:

[3,128,192]

now i want create a numpy array tha

相关标签:
3条回答
  • 2021-01-13 08:08

    Approach #1 : One way would be with np.repeat to repeat along the first axis after extending the input array to have one more dimension, a singleton one with None/np.newaxis -

    np.repeat(a[None],n,axis=0)
    

    Sample runs -

    1) 2D case :

    In [209]: a
    Out[209]: 
    array([[7, 8, 0, 1],
           [5, 0, 1, 0],
           [4, 3, 0, 1]])
    
    In [210]: np.repeat(a[None],2,axis=0)
    Out[210]: 
    array([[[7, 8, 0, 1],
            [5, 0, 1, 0],
            [4, 3, 0, 1]],
    
           [[7, 8, 0, 1],
            [5, 0, 1, 0],
            [4, 3, 0, 1]]])
    

    2) 3D case :

    In [214]: a
    Out[214]: 
    array([[[7, 2, 4, 2],
            [6, 7, 7, 6],
            [6, 8, 2, 1]],
    
           [[1, 5, 8, 5],
            [8, 0, 6, 4],
            [1, 2, 8, 8]]])
    
    In [215]: np.repeat(a[None],2,axis=0)
    Out[215]: 
    array([[[[7, 2, 4, 2],
             [6, 7, 7, 6],
             [6, 8, 2, 1]],
    
            [[1, 5, 8, 5],
             [8, 0, 6, 4],
             [1, 2, 8, 8]]],
    
    
           [[[7, 2, 4, 2],
             [6, 7, 7, 6],
             [6, 8, 2, 1]],
    
            [[1, 5, 8, 5],
             [8, 0, 6, 4],
             [1, 2, 8, 8]]]])
    

    Approach #2 : If you don't mind a read-only version of the input array, we could use np.broadcast_to -

    np.broadcast_to(a, (n,) + a.shape)
    

    Approach #3 : If you don't mind a view into the input array, here's one with NumPy strides -

    def strided_repeat_newaxis0(a, n):
        s0,s1,s2 = a.strides
        shp = (n,) + a.shape
        return np.lib.index_tricks.as_strided(a, shape=shp, strides=(0,s0,s1,s2))
    

    Runtime test

    In [290]: a = np.random.randint(0,9,(3,128,192))
    
    In [291]: %timeit np.repeat(a[None],100,axis=0)
    100 loops, best of 3: 6.15 ms per loop
    
    In [292]: %timeit strided_repeat_newaxis0(a, 100)
    100000 loops, best of 3: 4.69 µs per loop
    
    In [293]: %timeit np.broadcast_to(a, (n,) + a.shape)
    100000 loops, best of 3: 3.03 µs per loop
    
    0 讨论(0)
  • 2021-01-13 08:18

    Simply use np.stack

    # say you need 10 copies of a 3D array `a`
    In [267]: n = 10
    
    In [266]: np.stack([a]*n)
    

    Alternatively, you should use np.concatenate if you're really concerned about the performance.

    In [285]: np.concatenate([a[np.newaxis, :, :]]*n)
    

    Example:

    In [268]: a
    Out[268]: 
    array([[[ 0,  1,  2,  3],
            [ 4,  5,  6,  7],
            [ 8,  9, 10, 11],
            [12, 13, 14, 15]],
    
           [[16, 17, 18, 19],
            [20, 21, 22, 23],
            [24, 25, 26, 27],
            [28, 29, 30, 31]],
    
           [[32, 33, 34, 35],
            [36, 37, 38, 39],
            [40, 41, 42, 43],
            [44, 45, 46, 47]]])
    
    In [271]: a.shape
    Out[271]: (3, 4, 4)
    
    In [269]: n = 10
    
    In [270]: np.stack([a]*n).shape
    Out[270]: (10, 3, 4, 4)
    
    In [285]: np.concatenate([a[np.newaxis, :, :]]*n).shape
    Out[285]: (10, 3, 4, 4)
    

    Performance:

    # ~ 4x faster than using `np.stack`
    In [292]: %timeit np.concatenate([a[np.newaxis, :, :]]*n)
    100000 loops, best of 3: 10.7 µs per loop
    
    In [293]: %timeit np.stack([a]*n)
    10000 loops, best of 3: 41.1 µs per loop
    
    0 讨论(0)
  • 2021-01-13 08:22

    You can use np.repeat methods together with np.newaxis:

    import numpy as np
    
    test = np.random.randn(3,128,192)
    result = np.repeat(test[np.newaxis,...], 10, axis=0)
    print(result.shape)
    >> (10, 3, 128, 192)
    
    0 讨论(0)
提交回复
热议问题