Grouping of R dataframe by connected values

前端 未结 4 650
臣服心动
臣服心动 2021-01-13 02:07

I didn\'t find a solution for this common grouping problem in R:

This is my original dataset

ID  State
1   A
2   A
3   B
4   B
5   B
6   A
7   A
8            


        
相关标签:
4条回答
  • 2021-01-13 02:32

    You could try:

    library(dplyr)
    df %>%
      mutate(rleid = cumsum(State != lag(State, default = ""))) %>%
      group_by(rleid) %>%
      summarise(State = first(State), min = min(ID), max = max(ID)) %>%
      select(-rleid)
    

    Or as per mentioned by @alistaire in the comments, you can actually mutate within group_by() with the same syntax, combining the first two steps. Stealing data.table::rleid() and using summarise_all() to simplify:

    df %>% 
      group_by(State, rleid = data.table::rleid(State)) %>% 
      summarise_all(funs(min, max)) %>% 
      select(-rleid)
    

    Which gives:

    ## A tibble: 4 × 3
    #   State   min   max
    #  <fctr> <int> <int>
    #1      A     1     2
    #2      B     3     5
    #3      A     6     8
    #4      C     9    10
    
    0 讨论(0)
  • 2021-01-13 02:37

    An idea with data.table:

    require(data.table)
    
    dt <- fread("ID  State
    1   A
                2   A
                3   B
                4   B
                5   B
                6   A
                7   A
                8   A
                9   C
                10  C")
    
    dt[,rle := rleid(State)]
    dt2<-dt[,list(min=min(ID),max=max(ID)),by=c("rle","State")]
    

    which gives:

       rle State min max
    1:   1     A   1   2
    2:   2     B   3   5
    3:   3     A   6   8
    4:   4     C   9  10
    

    The idea is to identify sequences with rleid and then get the min and max of IDby the tuple rle and State.

    you can remove the rle column with

    dt2[,rle:=NULL]
    

    Chained:

     dt2<-dt[,list(min=min(ID),max=max(ID)),by=c("rle","State")][,rle:=NULL]
    

    You can shorten the above code even more by using rleid inside by directly:

    dt2 <- dt[, .(min=min(ID),max=max(ID)), by=.(State, rleid(State))][, rleid:=NULL]
    
    0 讨论(0)
  • 2021-01-13 02:41

    Here is another attempt using rle and aggregate from base R:

    rl <- rle(df$State)
    newdf <- data.frame(ID=df$ID, State=rep(1:length(rl$lengths),rl$lengths))
    newdf <- aggregate(ID~State, newdf, FUN = function(x) c(minID=min(x), maxID=max(x)))
    newdf$State <- rl$values
    
      # State ID.minID ID.maxID
    # 1     A        1        2
    # 2     B        3        5
    # 3     A        6        8
    # 4     C        9       10
    

    data

    df <- structure(list(ID = 1:10, State = c("A", "A", "B", "B", "B", 
    "A", "A", "A", "C", "C")), .Names = c("ID", "State"), class = "data.frame", 
    row.names = c(NA, 
        -10L))
    
    0 讨论(0)
  • 2021-01-13 02:48

    Here is a method that uses the rle function in base R for the data set you provided.

    # get the run length encoding
    temp <- rle(df$State)
    
    # construct the data.frame
    newDF <- data.frame(State=temp$values,
                        min.ID=c(1, head(cumsum(temp$lengths) + 1, -1)),
                        max.ID=cumsum(temp$lengths))
    

    which returns

    newDF
      State min.ID max.ID
    1     A      1      2
    2     B      3      5
    3     A      6      8
    4     C      9     10
    

    Note that rle requires a character vector rather than a factor, so I use the as.is argument below.


    As @cryo111 notes in the comments below, the data set might be unordered timestamps that do not correspond to the lengths calculated in rle. For this method to work, you would need to first convert the timestamps to a date-time format, with a function like as.POSIXct, use df <- df[order(df$ID),], and then employ a slight alteration of the method above:

    # get the run length encoding
    temp <- rle(df$State)
    
    # construct the data.frame
    newDF <- data.frame(State=temp$values,
                        min.ID=df$ID[c(1, head(cumsum(temp$lengths) + 1, -1))],
                        max.ID=df$ID[cumsum(temp$lengths)])
    

    data

    df <- read.table(header=TRUE, as.is=TRUE, text="ID  State
    1   A
    2   A
    3   B
    4   B
    5   B
    6   A
    7   A
    8   A
    9   C
    10  C")
    
    0 讨论(0)
提交回复
热议问题