This may just be an issue with the build system I am migrating to, but I\'ll include differences in the two systems and how I encountered the problem.
My old build s
The problem you are facing is most likely the result of building your shared library with ld
. User-level code on UNIX systems should never use ld
directly. You should use the compiler driver (g++
in your case) to perform the link instead.
Example:
// t.c
#include <sys/stat.h>
void fn(const char *p)
{
struct stat st;
stat(p, &st);
}
gcc -fPIC -c t.c
ld -shared -o t.so t.o
nm t.so | grep stat
U stat ## problem: this library is not linked correctly
Compare to correctly linked library:
gcc -shared -o t.so t.o
nm t.so | grep stat
0000000000000700 t stat
0000000000000700 t __stat
U __xstat@@GLIBC_2.2.5
To find where the above local stat
symbol came from, you could do this:
gcc -shared -o t.so t.o -Wl,-y,stat
t.o: reference to stat
/usr/lib/x86_64-linux-gnu/libc_nonshared.a(stat.oS): definition of stat
Finally, the reason U stat
disappears with optimization:
gcc -E t.c | grep -A2 ' stat '
extern int stat (const char *__restrict __file,
struct stat *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
gcc -E t.c -O | grep -A2 ' stat '
__attribute__ ((__nothrow__ , __leaf__)) stat (const char *__path, struct stat *__statbuf)
{
return __xstat (1, __path, __statbuf);
That's right: you get different preprocessed source depending on the optimization level.