Want to do multi-variation minimize with sympy

前端 未结 1 1738
南方客
南方客 2021-01-12 15:14

I want to use minimization with scipy.optimize using Symbolized charactors

from scipy.optimize import minimize
from sympy.utilities.lambdify import lambdify
         


        
相关标签:
1条回答
  • 2021-01-12 15:40

    First of all: Welcome to SO!

    As far as I know, lambdify() cannot deal with vectors. Furthermore, when using Sympy, determining the jacobian is easy. You could try:

    import numpy as np
    from scipy.optimize import minimize
    from sympy.utilities.lambdify import lambdify
    import sympy as sy
    
    sy.init_printing()  # LaTeX like pretty printing for IPython
    
    
    x1, x2, x3, x4 = sy.symbols('x1 x2 x3 x4')
    xx = (x1, x2, x3, x4)
    f = -2*x1**2*x3+6*x1**2*x4+13*x1**2-3*x1*x2**2+x1*x2+3*x1*x3**2-3*x4+103
    f_n = lambdify(xx, f, modules='numpy')
    
    # Build Jacobian:
    jac_f = [f.diff(x) for x in xx]
    jac_fn = [lambdify(xx, jf, modules='numpy') for jf in jac_f]
    
    
    def f_v(zz):
        """ Helper for receiving vector parameters """
        return f_n(zz[0], zz[1], zz[2], zz[3])
    
    
    def jac_v(zz):
        """ Jacobian Helper for receiving vector parameters """
        return np.array([jfn(zz[0], zz[1], zz[2], zz[3]) for jfn in jac_fn])
    
    
    bnds = ((-1, 1), (-1, 1), (-1, 1), (-1, 1))
    zz0 = np.array([1, 1, 1, 1])
    
    rslts = minimize(f_v, zz0, method='SLSQP', jac=jac_v, bounds=bnds)
    print(rslts)
    
    0 讨论(0)
提交回复
热议问题