When I run the code below:
s = pandas.Series([\'c\', \'a\', \'b\', \'a\', \'b\'])
print(s.value_counts())
Sometimes I get this:
<
You have a few options to sort consistently given a series:
s = pd.Series(['a', 'b', 'a', 'c', 'c'])
c = s.value_counts()
Use pd.Series.sort_index:
res = c.sort_index()
a 2
b 1
c 2
dtype: int64
For descending counts, do nothing, as this is the default. Otherwise, you can use pd.Series.sort_values, which defaults to ascending=True
. In either case, you should make no assumptions on how ties are handled.
res = c.sort_values()
b 1
c 2
a 2
dtype: int64
More efficiently, you can use c.iloc[::-1]
to reverse the order.
You can use numpy.lexsort to sort by count and then by index. Note the reverse order, i.e. -c.values
is used first for sorting.
res = c.iloc[np.lexsort((c.index, -c.values))]
a 2
c 2
b 1
dtype: int64
Adding a reindex
after value_counts
df.value_counts().reindex(df.unique())
Out[353]:
a 1
b 1
dtype: int64
Update
s.value_counts().sort_index().sort_values()
You could use sort_index
:
print(df.value_counts().sort_index())
Output:
a 1
b 1
dtype: int64
Please see the documentation if you want to use parameters (like ascending=True
etc.)
sort_index
vs reindex(df.unique())
(as suggested by @Wen) seem to be perform quite similar:
df.value_counts().sort_index(): 1000 loops, best of 3: 636 µs per loop
df.value_counts().reindex(df.unique()): 1000 loops, best of 3: 880 µs per loop