Is there an easy way to evaluate the column wise dot product of 2 matrices (lets call them A
and B
, of type Eigen::MatrixXd
) that have
There are many ways to achieve this, all performing lazy evaluation:
res = (A.array() * B.array()).colwise().sum();
res = (A.cwiseProduct(B)).colwise().sum();
And my favorite:
res = (A.transpose() * B).diagonal();
Here is how I'd do it with an Eigen::Map
(assuming real matrices, can extend to complex via taking the adjoint), where rows
and cols
denote the number of rows/columns:
#include <Eigen/Dense>
#include <iostream>
int main()
{
Eigen::MatrixXd A(2, 2);
Eigen::MatrixXd B(2, 2);
A << 1, 2, 3, 4;
B << 5, 6, 7, 8;
int rows = 2, cols = 2;
Eigen::VectorXd vA = Eigen::Map<Eigen::VectorXd>(
const_cast<double *>(A.data()), rows * cols, 1);
Eigen::VectorXd vB = Eigen::Map<Eigen::VectorXd>(
const_cast<double *>(B.data()), rows * cols, 1);
double inner_prod = (vA.transpose() * vB).sum();
std::cout << inner_prod << std::endl;
}
I did experiment based on @ggael's answer.
MatrixXd A = MatrixXd::Random(600000,30);
MatrixXd B = MatrixXd::Random(600000,30);
MatrixXd res;
clock_t start, end;
start = clock();
res.noalias() = (A * B.transpose()).diagonal();
end = clock();
cout << "Dur 1 : " << (end - start) / (double)CLOCKS_PER_SEC << endl;
MatrixXd res2;
start = clock();
res2 = (A.array() * B.array()).rowwise().sum();
end = clock();
cout << "Dur 2 : " << (end - start) / (double)CLOCKS_PER_SEC << endl;
MatrixXd res3;
start = clock();
res3 = (A.cwiseProduct(B)).rowwise().sum();
end = clock();
cout << "Dur 3 : " << (end - start) / (double)CLOCKS_PER_SEC << endl;
And the output is:
Dur 1 : 10.442
Dur 2 : 8.415
Dur 3 : 7.576
Seems that the diagonal() solution is the slowest one. The cwiseProduct one is the fastest. And the memory usage is the same.