Column-wise dot product in Eigen C++

前端 未结 3 1999
不知归路
不知归路 2021-01-12 14:43

Is there an easy way to evaluate the column wise dot product of 2 matrices (lets call them A and B, of type Eigen::MatrixXd) that have

相关标签:
3条回答
  • 2021-01-12 14:56

    There are many ways to achieve this, all performing lazy evaluation:

    res = (A.array() * B.array()).colwise().sum();
    res = (A.cwiseProduct(B)).colwise().sum();
    

    And my favorite:

    res = (A.transpose() * B).diagonal();
    
    0 讨论(0)
  • 2021-01-12 14:58

    Here is how I'd do it with an Eigen::Map (assuming real matrices, can extend to complex via taking the adjoint), where rows and cols denote the number of rows/columns:

    #include <Eigen/Dense>
    #include <iostream>
    
    int main()
    {
        Eigen::MatrixXd A(2, 2);
        Eigen::MatrixXd B(2, 2);
        A << 1, 2, 3, 4;
        B << 5, 6, 7, 8;
    
        int rows = 2, cols = 2;
    
        Eigen::VectorXd vA = Eigen::Map<Eigen::VectorXd>(
                                 const_cast<double *>(A.data()), rows * cols, 1);
        Eigen::VectorXd vB = Eigen::Map<Eigen::VectorXd>(
                                 const_cast<double *>(B.data()), rows * cols, 1);
    
        double inner_prod = (vA.transpose() * vB).sum();
    
        std::cout << inner_prod << std::endl;
    }
    
    0 讨论(0)
  • 2021-01-12 15:05

    I did experiment based on @ggael's answer.

    MatrixXd A = MatrixXd::Random(600000,30);
    MatrixXd B = MatrixXd::Random(600000,30);
    
    MatrixXd res;
    clock_t start, end;
    start = clock();
    res.noalias() = (A * B.transpose()).diagonal();
    end = clock();
    cout << "Dur 1 : " << (end - start) / (double)CLOCKS_PER_SEC << endl;
    
    MatrixXd res2;
    start = clock();
    res2 = (A.array() * B.array()).rowwise().sum();
    end = clock();
    cout << "Dur 2 : " << (end - start) / (double)CLOCKS_PER_SEC << endl;
    
    MatrixXd res3;
    start = clock();
    res3 = (A.cwiseProduct(B)).rowwise().sum();
    end = clock();
    cout << "Dur 3 : " << (end - start) / (double)CLOCKS_PER_SEC << endl;
    

    And the output is:

    Dur 1 : 10.442
    Dur 2 : 8.415
    Dur 3 : 7.576
    

    Seems that the diagonal() solution is the slowest one. The cwiseProduct one is the fastest. And the memory usage is the same.

    0 讨论(0)
提交回复
热议问题