The image below shows a rotated box that should be moved horizontally on the X and Z axes. Y should stay unaffected to simplify the scenario. The box could also be the SCNNo
Building on @Sulevus's correct answer, here's an extension to SCNNode
that simplifies things by using the convertVector
rather than the convertPosition
transformation, in Swift.
I've done it as a var
returning a unit vector, and supplied an SCNVector3
overload of multiply so you can say things like
let action = SCNAction.move(by: 2 * cameraNode.leftUnitVectorInParent, duration: 1)
public extension SCNNode {
var leftUnitVectorInParent: SCNVector3 {
let vectorInSelf = SCNVector3(x: 1, y: 0, z: 0)
guard let parent = self.parent else { return vectorInSelf }
// Convert to parent's coord system
return parent.convertVector(vectorInSelf, from: self)
}
var forwardUnitVectorInParent: SCNVector3 {
let vectorInSelf = SCNVector3(x: 0, y: 0, z: 1)
guard let parent = self.parent else { return vectorInSelf }
// Convert to parent's coord system
return parent.convertVector(vectorInSelf, from: self)
}
func *(lhs: SCNVector3, rhs: CGFloat) -> SCNVector3 {
return SCNVector3(x: lhs.x * rhs, y: lhs.y * rhs, z: lhs.z * rhs)
}
func *(lhs: CGFloat, rhs: SCNVector3) -> SCNVector3 {
return SCNVector3(x: lhs * rhs.x, y: lhs * rhs.y, z: lhs * rhs.z)
}
}
So my understanding is that you want to move the Box Node along its own X axis (not it's parents X axis). And because the Box Node is rotated, its X axis is not aligned with its parent's one, so you have the problem to convert the translation between the two coordinate systems.
The node hierarchy is
parentNode
|
|----boxNode // rotated around Y (vertical) axis
To move boxNode along its own X axis
// First let's get the current boxNode transformation matrix
SCNMatrix4 boxTransform = boxNode.transform;
// Let's make a new matrix for translation +2 along X axis
SCNMatrix4 xTranslation = SCNMatrix4MakeTranslation(2, 0, 0);
// Combine the two matrices, THE ORDER MATTERS !
// if you swap the parameters you will move it in parent's coord system
SCNMatrix4 newTransform = SCNMatrix4Mult(xTranslation, boxTransform);
// Allply the newly generated transform
boxNode.transform = newTransform;
Please Note: The order matters when multiplying matrices
Using SCNNode coordinate conversion functions, looks more straight forward to me
// Get the boxNode current position in parent's coord system
SCNVector3 positionInParent = boxNode.position;
// Convert that coordinate to boxNode's own coord system
SCNVector3 positionInSelf = [boxNode convertPosition:positionInParent fromNode:parentNode];
// Translate along own X axis by +2 points
positionInSelf = SCNVector3Make(positionInSelf.x + 2,
positionInSelf.y,
positionInSelf.z);
// Convert that back to parent's coord system
positionInParent = [parentNode convertPosition: positionInSelf fromNode:boxNode];
// Apply the new position
boxNode.position = positionInParent;