I have searched and searched, but I cant seem to find an elegant way of doing this!
I have a dataset Data
consisting of Data$x
(dates) and
Doesn't exist as far as I know, but you can manipulate your data to produce it.
library(ggplot2)
df = data.frame(x=c(1:10),y=runif(10))
prepGradient <- function(x,y,spacing=max(y)/100){
stopifnot(length(x)==length(y))
df <- data.frame(x=x,y=y)
newDf = data.frame(x=NULL,y=NULL,z=NULL)
for (r in 1:nrow(df)){
n <- floor(df[r,"y"]/spacing)
for (s in c(1:n)){
tmp <- data.frame(x=df[r,"x"],y=spacing,z=s*spacing)
newDf <- rbind(newDf,tmp)
}
tmp <- data.frame(x=df[r,"x"],y=df[r,"y"]%%spacing,z=df[r,"y"])
newDf <- rbind(newDf,tmp)
}
return(newDf)
}
df2 <- prepGradient(df$x,df$y)
ggplot(df2,aes(x=x,y=y,fill=z)) +
geom_bar(stat="identity") +
scale_fill_gradient2(low="red", high="green", mid="yellow",midpoint=median(df$y))+
ggtitle('Vertical Gradient Example') +
theme_minimal()
Another, not very pretty, hack using geom_segment
. The x start and end positions (x
and xend
) are hardcoded (- 0.4
; + 0.4
), so is the size
. These numbers needs to be adjusted depending on the number of x values and range of y.
# some toy data
d <- data.frame(x = 1:3, y = 1:3)
# interpolate values from zero to y and create corresponding number of x values
vals <- lapply(d$y, function(y) seq(0, y, by = 0.01))
y <- unlist(vals)
mid <- rep(d$x, lengths(vals))
d2 <- data.frame(x = mid - 0.4,
xend = mid + 0.4,
y = y,
yend = y)
ggplot(data = d2, aes(x = x, xend = xend, y = y, yend = yend, color = y)) +
geom_segment(size = 2) +
scale_color_gradient2(low = "red", mid = "yellow", high = "green",
midpoint = max(d2$y)/2)
A somewhat related question which may give you some other ideas: How to make gradient color filled timeseries plot in R