If I have following dataframe
| id | timestamp | code | id2
| 10 | 2017-07-12 13:37:00 | 206 | a1
| 10 | 2017-07-12 13:40:00 | 206 | a1
| 10 | 20
I think you need GroupBy.first:
df.groupby(["id", "id2"])["timestamp"].first()
Or drop_duplicates:
df.drop_duplicates(subset=['id','id2'])
For same output:
df1 = df.groupby(["id", "id2"], as_index=False)["timestamp"].first()
print (df1)
id id2 timestamp
0 10 a1 2017-07-12 13:37:00
1 10 a2 2017-07-12 19:00:00
2 11 a1 2017-07-12 13:37:00
df1 = df.drop_duplicates(subset=['id','id2'])[['id','id2','timestamp']]
print (df1)
id id2 timestamp
0 10 a1 2017-07-12 13:37:00
1 10 a2 2017-07-12 19:00:00
2 11 a1 2017-07-12 13:37:00
One can create a new column after merging id and id2 strings, then remove rows where it is duplicated:
df['newcol'] = df.apply(lambda x: str(x.id) + str(x.id2), axis=1)
df = df[~df.newcol.duplicated()].iloc[:,:4] # iloc used to remove new column.
print(df)
Output:
id timestamp code id2
0 10 2017-07-12 13:37:00 206 a1
3 10 2017-07-12 19:00:00 206 a2
4 11 2017-07-12 13:37:00 206 a1