Check if values in a set are in a numpy array in python

后端 未结 3 1796
借酒劲吻你
借酒劲吻你 2021-01-12 11:32

I want to check if a NumPyArray has values in it that are in a set, and if so set that area in an array = 1. If not set a keepRaster = 2.

numpyArray = #some          


        
相关标签:
3条回答
  • 2021-01-12 12:17

    Here is one possible way of doing what you whant:

    numpyArray = np.array([1, 8, 35, 343, 23, 3, 8]) # could be n-Dimensional array
    repeatSet = np.array([3, 5, 6, 8])
    mask = (numpyArray[...,None] == repeatSet[None,...]).any(axis=-1) 
    print mask
    >>> [False  True False False False  True  True]
    
    0 讨论(0)
  • 2021-01-12 12:28

    In versions 1.4 and higher, numpy provides the in1d function.

    >>> test = np.array([0, 1, 2, 5, 0])
    >>> states = [0, 2]
    >>> np.in1d(test, states)
    array([ True, False,  True, False,  True], dtype=bool)
    

    You can use that as a mask for assignment.

    >>> test[np.in1d(test, states)] = 1
    >>> test
    array([1, 1, 1, 5, 1])
    

    Here are some more sophisticated uses of numpy's indexing and assignment syntax that I think will apply to your problem. Note the use of bitwise operators to replace if-based logic:

    >>> numpy_array = numpy.arange(9).reshape((3, 3))
    >>> confused_array = numpy.arange(9).reshape((3, 3)) % 2
    >>> mask = numpy.in1d(numpy_array, repeat_set).reshape(numpy_array.shape)
    >>> mask
    array([[False, False, False],
           [ True, False,  True],
           [ True, False,  True]], dtype=bool)
    >>> ~mask
    array([[ True,  True,  True],
           [False,  True, False],
           [False,  True, False]], dtype=bool)
    >>> numpy_array == 0
    array([[ True, False, False],
           [False, False, False],
           [False, False, False]], dtype=bool)
    >>> numpy_array != 0
    array([[False,  True,  True],
           [ True,  True,  True],
           [ True,  True,  True]], dtype=bool)
    >>> confused_array[mask] = 1
    >>> confused_array[~mask & (numpy_array == 0)] = 0
    >>> confused_array[~mask & (numpy_array != 0)] = 2
    >>> confused_array
    array([[0, 2, 2],
           [1, 2, 1],
           [1, 2, 1]])
    

    Another approach would be to use numpy.where, which creates a brand new array, using values from the second argument where mask is true, and values from the third argument where mask is false. (As with assignment, the argument can be a scalar or an array of the same shape as mask.) This might be a bit more efficient than the above, and it's certainly more terse:

    >>> numpy.where(mask, 1, numpy.where(numpy_array == 0, 0, 2))
    array([[0, 2, 2],
           [1, 2, 1],
           [1, 2, 1]])
    
    0 讨论(0)
  • 2021-01-12 12:34

    In recent numpy you could use a combination of np.isin and np.where to achieve this result. The first method outputs a boolean numpy array that evaluates to True where its vlaues are equal to an array-like specified test element (see doc), while with the second you could create a new array that set some a value where the specified confition evaluates to True and another value where False.

    Example

    I'll make an example with a random array but using the specific values you provided.

    import numpy as np
    
    repeatSet = ([2, 5, 6, 8])
    
    arr = np.array([[1,5,1],
                    [0,1,0],
                    [0,0,0],
                    [2,2,2]])
    
    out = np.where(np.isin(arr, repeatSet), 1, 77)
    
    > out
    array([[77,  1, 77],
           [77, 77, 77],
           [77, 77, 77],
           [ 1,  1,  1]])
    
    0 讨论(0)
提交回复
热议问题