numpy.sum may be slower than Python for-loop

前端 未结 1 1864
不思量自难忘°
不思量自难忘° 2021-01-12 10:31

When summing an array over a specific axis, the dedicated array method array.sum(ax) may actually be slower than a for-loop :

v = np.random.rand         


        
相关标签:
1条回答
  • 2021-01-12 11:07

    No you can't. As your interesting example points out numpy.sum can be suboptimal, and a better layout of the operations via explicit for loops can be more efficient.

    Let me show another example:

    >>> N, M = 10**4, 10**4
    >>> v = np.random.randn(N,M)
    >>> r = np.empty(M)
    >>> timeit.timeit('v.sum(axis=0, out=r)', 'from __main__ import v,r', number=1)
    1.2837879657745361
    >>> r = np.empty(N)
    >>> timeit.timeit('v.sum(axis=1, out=r)', 'from __main__ import v,r', number=1)
    0.09213519096374512
    

    Here you clearily see that numpy.sum is optimal if summing on the fast running index (v is C-contiguous) and suboptimal when summing on the slow running axis. Interestingly enough an opposite pattern is true for for loops:

    >>> r = np.zeros(M)
    >>> timeit.timeit('for row in v[:]: r += row', 'from __main__ import v,r', number=1)
    0.11945700645446777
    >>> r = np.zeros(N)
    >>> timeit.timeit('for row in v.T[:]: r += row', 'from __main__ import v,r', number=1)
    1.2647287845611572
    

    I had no time to inspect numpy code, but I suspect that what makes the difference is contiguous memory access or strided access.

    As this examples shows, when implementing a numerical algorithm, a correct memory layout is of great significance. Vectorized code not necessarily solves every problem.

    0 讨论(0)
提交回复
热议问题